NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS IN APPLIED SCIENCE PROCEEDINGS OF THE U.S. - JAPAN SEMINAR, TOKYO, 1982
This Page Intentionally Left Blank
NORTH-HOLLAND
MATHEMATICS STUDIES
81
Lecture Notes in Numerical and Applied Analysis Vol. 5 General Editors: H. Fujita (University of Tokyo) and M. Yamaguti (Kyoto University)
Nonlinear Partial Differential Equations in Applied Science; Proceedings of The U.S. -Japan Seminar, Tokyo, 1982 Edited by
HlROSHl FUJITA (University of Tokyo) PETER D. LAX (New York University) GILBERT STRANG (Massachusetts Institute of Technology)
1983
NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM NEW YORK. OXFORD
KINOKUNIYA COMPANY LTD. TOKYO JAPAN
NORTH-HOLLAND PUBLISHING COMPANY -AMSTERDAM,NEW YORK,OXFORD KINOKUNIYA COMPANY -TOKYO
@ 1983 by Publishing Committee of Lecture Notes in Numerical and Applied Analysis
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
ISBN: 0 444 86681 7
Publishers NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM-OXFORD-NEW YORK
*
*
*
KINOKUNIYA COMPANY LTD. TOKYO JAPAN
Sole distributors f o r rhe U.S.A; and Canada ELSEVIER SCIENCE PUBLISHING COMPANY. INC. 52 VANDERBI1.T AVENUE NEW YORK. N.Y. 10017 Distributed in Japan by KINOKUNIYA COMPANY LTD.
Lecture Notes in Numerical and Applied Analysis Vol. 5 General Editors H. Fujita University of Tokyo
M. Yamaguti Kyoto Universtiy
Editional Board H. Fujii, Kyoto Sangyo Universtiy M . Mimura, Hiroshima University T. Miyoshi, Kumamoto University M. Mori, The University of Tsukuba T. Nishida, Kyoto Universtiy T. Nishida. Kyoto University T . Taguti, Konan Universtiy S . Ukai, Osaka City Universtiy T . Ushijima, The Universtiy of Electro-Communications PRINTED IN JAPAN
PREFACE Nonlinear equations come to us in tremendous variety, each with its own questions and its own difficulties. At one extreme are the completely integrable equations, with constants of the motion and a rich algebraic structure. At the other extreme is chaos, with turbulent solutions and statistical averages. Between these two possibilities, algebraic and ergodic, lies the full range of nonlinear phenomena. There are smooth solutions which develop shocks, or bifurcate, or maintain slow and nearly periodic variations that imitate the linear theory. Each of these questions requires a separate treatment, and the subject would be simpler if we know for every equation which behavior to expect. Nevertheless these equations, the nonlinear partial differential equations which arise in applications, share one crucial property. They are all vulnerable when the right pattern in found. It is a slow process, to uncover and reveal their structure, but it is moving forward. The papers in this volume reflect a part of that progress. They were presented at the U.S.-Japan Seminar in Tokyo in July 1982. One goal of the seminar was to establish personal contact among those mathematicians who are actively working for these difficult but fascinating equations in the U.S. and in Japan. The other goal was a wider one, that is, to invoke most advanced scientific talks and discussions on major topics in this developing field of applied analysis. Thanks to the cooperation of all participants from the U.S., Japan, and some third countries including China, the seminar was successful in both sense mentioned above and we believe that these proceedings of the seminar which contain all papers delivered there will contribute much to the progress of the study of nonlinear problems. Finally, we, who served also as the coordinators of the seminar, wish to express our gratitude to the governmental agencies, i.e., National Science Foundation and Japan Society for the Promotion of Science, for their support and to industrial companies in Japan for practical assistances which they gave as institutional participants. Last but not least, our gratitudes go to all of our committee members and staff members of the secretariat of the seminar for their enthusiasm and devotion. September 15, 1983
H. FUJITA P. D. LAX G. STRANG
This Page Intentionally Left Blank
CONTENTS
PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ronald J. DIPERNA: Conservation Laws and the Weak Topology.. . . .
v ix 1
Hiroshi FUJI1 and Yasumasa NISHIURA: Global Bifurcation Diagram in Nonlinear Diffusion Systems ...............................
17
Yoshikazu GIGA: The Navier-Stokes Initial Value Problem In Lp . . . . . 37 Ei-Ichi HANZAWA: Nash’s Implicit Function Theorem and the Stefan 55 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tosio KATO: Quasi-linear Equations of Evolution in Nonreflexive Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61
Hideo KAWARADA and Takao HANADA: Asymptotic Behaviors of the Solution of an Elliptic Equation with Penalty Terms . . . . . . . . . . . 77 Robert V. KOHN:
Partial Regularity and the Navier-Stokes Equations
........................................................
101
Kyiya MASUDA: Blow-up of Solutions of Some Nonlinear Diffusion 119 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hiroshi MATANO: Asymptotic Behavior of the Free Boundaries Arising in One Phase Stefan Problems in Multi-Dimensional Spaces . . . . 133 Akitaka MATSUMURA and Takaaki NISHIDA: Initial Boundary Value Problems for the Equations of Compressible Viscous and HeatConductive Fluid ......................................... 153 Sadao MIYATAKE: Integral Representation of Solutions for Equations of Mixed Type in a Half Space ............................. 17 1 Tetsuhiko MIYOSHI: Yielding and Unloading in Semidiscrete Problem 189 of Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alan C. NEWELL: Two Dimensional Convection Patterns in Large Aspect Ratio Systems ................ ..................... 205 Hisashi OKAMOTO: Stationary Free Boundary Problems for Circular Flows with or without Surface Tension ...................... 233 G. PAPANICOLAOU, D. MCLAUGHLIN and M. WEINSTEIN: Focusing Singurarity for the Nonlinear Schroedinger Equation ....... 253 Mikio SATO and Yasuko SATO:
Soliton Equations as Dynamical Sys-
viii
Contents
tems on Infinite Dimensional Grassmann Manifold ............ 259 Gilbert STRANG: L’ and L” Approximation of Vector Fields in the Plane ........................................................ 273 Takashi SUZUKI: Deformation Formulas and their Applications to Spec289 tral and Evolutional Inverse Problems ....................... Seiji UKAI and Kiyoshi ASANO: Stationary Solutions of the Boltzmann 313 Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Teruo USHIJIMA: On the Linear Stability Analysis of Magnetohydrodynamic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Hans F. WEJNBERGER: A Simple System with a Continuum of Stable 345 Inhomogeneous Steady States .............................. Masaya YAMAGUTI and Masayoshi HATA: Chaos Arising from the MoDiscretization of O.D.E. and an Age Dependent Population del . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 John G. HEYWOOD: Stability, Regularity and Numerical Analysis of the Nonstationary Navier-Stokes Problem .................... 377 LIN Q u n and JIANG Lishang: The Existence and the Finite Element Apau Au=C uj---+f
. . . . . . . . . . . . . . 399 ax, YING Lung-an and TENG Zhen-huan: A Hyperbolic Model of Combus409 tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . proximation for the System
ZHOU Yu-lin: Boundary Value Problems for Some Nonlinear Evolutional Systems of Partial Differential Equations . . . . . . . . . . . . . . . 435 ... DIRECTORY OF PARTICIPANTS ................................ xiii
PROGRAM MONDAY, JULY 5 8:45 Opening of Seminar Session 5-1 9:OO-1O:OO Prof. T. Kato (University of California, Berkeley) “Quasi-Linear Equations of Evolution in Nonreflexive Banach Spaces” 10:15-11:OO Prof. K. Masuda (T6hoku University) “Some Remarks on Blow-up of Solutions of Nonlinear Diffusion Equations” 11:05-11:50 Dr. T . Suzuki (University of Tokyo) “Deformation Formulas and their Applications to Spectral and Evolutional Inverse Problems” Session 5-2 13:45-14:30 Mr. H. Okamoto (University of Tokyo) “Stationary Free Boundary Problems for Circular Flows with or without Surface Tension” 14:35-15:20 Prof. Lin Qun (Institute of Systems Science, Academia Sinica) and Prof. Jiang Li-shang (Peking University) “The Existence and the Finite Element Approximation for the System
15:20-16:OO Coffee Break 16:OO-17:OO Prof. H. F. Weinberger (University of Minnesota) “A Simple System with a Continuum of Stable Inhomogeneous Steady States” TUESDAY, JULY 6 Session 6-1 9:OO-1O:OO Prof. R. J. DiPerna (Duke University) “Shock Waves and Entropy” 10:15-11:OO Prof. S. Ukai (Osaka City University) and Prof. K. Asano (Kyoto University) “Stationary Solutions of the Boltzmann Equation” 11:05-1150 Prof. T. Nishida (Kyoto University) and Dr. A. Matsumura (Kyoto University) “Initial Boundary Value Problems for the Equations of Compressible Viscous and Heat-Conductive Fluid” Session 6-2
Program
X
13:45-14:30 Prof. S. Miyatake (Kyoto University) “Integral Representation of Solutions for Equations of Mixed Type in a Half Space” 14:35-15:20 Prof. H. Fujii (Kyoto Sangyo University) and Prof. Y. Nishiura (Kyoto Sangyo University) “Global Aspects in Bifurcation Problems for Nonlinear Diffusion Systems” (tentative) 15:20-16:OO Coffee Break 16:OO-17:OO Prof. A. C. Newell (University of Arizona) “Two-Dimensional Convection Patterns in Large Aspect Ratio Systems” WEDNESDAY, JULY 7 Session 7-1 9:OO-1O:OO Prof. M. Sat0 (Research Institute for Mathematical Sciences, Kyoto University) “Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold” 10: 15-1 1:00 Prof. A. C. Newell (University of Arizona) “The Connection between Wahlquist-Estabrook, Hirota, r Function, and Inverse Scattering Methods for the AKNS Hierarchy” 11:05-1150 Prof. Zhou Yu-lin (Peking University) “Some Problems for Nonlinear Evolutional Systems of Partial Differential Equations” THURSDAY, JULY 8 Session 8-1 9:OO-1O:OO Prof. M. Yamaguti (Kyoto University) “‘Chaos’ Caused by Discretization” 10:15-1 1:OO Prof. H. Matano (Hiroshima University) “Asymptotic Behavior of the Free Boundaries Arising in One Phase Stefan Problems in Multi-Dimensional Spaces” 11:05-1150 Dr. E. Hanzawa (Hokkaido University) “Nash’s Implicit Function Theorem and the Stefan Problem” Session 8-2 13:45-14:30 Prof. H. Kawarada (University of Tokyo) “New Penalty Method and its Application to Free Boundary Problems” 14:35-15:20 Prof. T. Ushijima (University of Electro-Communications) “On the Linear Stability Analysis of Magnetohydrodynamic System” 15:20-16:00 Coffee Break 16:OO-17:OO Prof. G . Papanicolaou (Courant Institute of Mathematical Sciences, New York University)
Program
xi
“Modulation Theory for the Cubic Schrodinger Equation in Random Media” FRIDAY, JULY 9 Session 9-1 9:OO-1O:OO Prof. R. V. Kohn (Courant Institute of Mathematical Science, New York University) “Partial Regularity for the Navier-Stokes Equations” 10:15-11:OO Mr. Y. Giga (Nagoya University) “The Navier-Stokes Initial Value Problem in Lp and Related Problems” 11:05-1150 Prof. J. G. Heywood (University of British Columbia) “Stability, Regularity and Numerical Analysis of the Nonstationary Navier-Stokes Problem” Session 9-2 13:45-14:30 Prof. Ying Lung-an (Peking University) and Prof. Teng Zhen-huan (Peking University) “A Hyperbolic Model of Combustion” 14:35-15:20 Prof. T. Miyoshi (Kumamoto University) “Yielding and Unloading in Semi-Discrete Problem of Plasticity” 15:20-16:OO Coffee Break 16:OO-17:OO Prof. G. Strang (Massachusetts Institute of Technology) “Optimization Problems for Partial Differential Equations” 17:05 Closing of Seminar
This Page Intentionally Left Blank
DIRECTORY O F PARTICIPANTS OF US-JAPAN SEMINAR '82 IN APPLIED ANALYSIS GUESTS OF SEMINAR Professor Tetsuichi Asaka Science University of Tokyo (Emeritus Professor of University of Tokyo) Dr. Tatuo Simizu Laboratory of Shimizu Construction Co. Ltd. Professor Shoji Tanaka University of Tokyo Dr. Hajimu Yoneguchi Nippon UNIVAC Sogd Kenkyusho, Inc. FOREIGN PARTICIPANTS (US Delegates) Ronald J. DiPerna Tosio Kato Robert V. Kohn Alan C. Newell George Papanicolaou Gilbert Strang Hans F. Weinberger
Duke University University of California, Berkeley Courant Institute of Mathematical Sciences, New York University The University of Arizona Courant Institute of Mathematical Sciences, New York University Massachusetts Institute of Technology University of Minnesota
(Special Participants from Third Countries) John G. Heywood Lin Qun Ying Lung-an Zhou Yu-lin
The University of British Columbia Institute of Systems Science, Academia Sinica Peking University Peking University
xiv
Directory of Participants
JAPANESE PARTICIPANTS Rentaro Agemi Kiyoshi Asano Hiroshi Fujii Hiroshi Fujita Daisuke Fujiwara Isamu Fukuda Yoshikazu Giga Ei-Ichi Hanzawa Masayoshi Hata Imsik Hong Yuzo Hosono Atsushi Inoue Hitoshi Ishii Nobutoshi Itaya Masayuki Ito SeizB It6 Tatsuo Itoh Takao Kakita Hideo Kawarada Shuichi Kawashima Fumio Kikuchi Hikosaburo Komatsu Yukio K6mura Yoshio Konishi Takeshi Kotake ShigeToshi Kuroda Kyoya Masuda Hiroshi Matano Akitaka Matsumura Akihiko Miyachi Isao Miyadera Sadao Miyatake Tetsuhiko Miyoshi Sigeru Mizohata Ryuichi Mizumachi Hiroko Morimoto
Hokkaido University Kyoto University Kyoto Sangyo University University of Tokyo Tokyo Institute of Technology Kokushikan University Nagoya University Hokkaido University Kyoto University Nihon University Kyoto Sangyo University Tokyo Institute of Technology Chuo University Kobe University of Commerce Hiroshima University University of Tokyo University of Tokyo Waseda University University of Tokyo Nara Women’s University University of Tokyo University of Tokyo Ochanomizu University University of Tokyo Tohoku University University of Tokyo Tohoku University Hiroshima University Kyoto University University of Tokyo Waseda University Kyoto University Kumamoto University Kyoto University Tohoku University Meiji University
Directory of Participants
Katsuya Nakashima Yoshimoto Nakata Takaaki Nishida Yasumasa Nishiura Hisashi Okamoto Shin Ozawa Mikio Sat0 Yasuko Sat0 Norio Shimakura Taira Shirota Takashi Suzuki Masahisa Tabata lzumi Takagi Hiroki Tanabe Seiji Ukai Teruo Ushijima Shigehiro Ushiki Masaya Yamaguti Kiyoshi Yoshida KGsaku Yosida
Waseda University Science University of Tokyo Kyoto University Kyoto Sangyo University University of Tokyo University of Tokyo Kyoto University Ryukyu University Kyoto University Hokkaido University University of Tokyo The University of Electro-Communications Tokyo Metropolitan College of Aeronautical Engineering Osaka University Osaka City University The University of Electro-Communications Kyoto University Kyoto University Kumamoto University University of Tokyo
xv
xvi
Directory of Participants
INSTITUTIONAL PARTICIPANTS Co., Ltd. AISl 4 SE AISIN-WARNER Ltd. B UN-EIDO Energy Research Laboratry, Hitachi, Ltd. FACOM HITAC FUJIFACOM CO. Fujitsu Ltd. FUKUMOTO-SHOIN, Ltd. Hitachi Ltd., Central Research Laboratory Hitachi Ltd., Software Works Hitachi Ltd., System Development Laboratory Hitachi Software Engineering Co., Ltd. HOKUSHIN ELECTRIC WORKS Ltd. IBM Japan, Ltd. Institute of Japanese Union of Scientists and Engineers Ishikawajima-Harima Heavy Industries Co., Ltd. Japan Advanced Numerical Analysis. Inc. Japan Process Development Co., Ltd. Japanese Standards Association Kajima Co. Kawasaki Steel Co., Chiba Works KENBUN SHOIN Co., Ltd. Kyoei Information Processing Service Center Ltd. Maeda Construction Co., Ltd. Mitsubishi Central Research Laboratory Mitsubishi Heavy Industries Co., Ltd. Mitsubishi Research Institute Inc. N.C.R. Japan Ltd. NIPPON BUSINESS CONSULTANT Co., Ltd. Nippon Electric Company (C & C Systems Research Laboratories) Nippon Sheet Glass Co. Nippon UNIVAC Kaisha, Ltd. Oki Electric Industry Company, Ltd. PANAFACOM Ltd. Shimizu Construction Co., Ltd. Surugadai Gakuen
Directory of Participants
TOKYO SHUPPAN Co., Ltd. Tokyo Shoseki Co., Ltd. Toshiba Research and Development Center YAZAKI Corporation YOYOGI SEMINAR
xvii
xviii
Directory of Participants
COMMITTEES AND STAFFS 1 . Coordinators
Japanese Coordinator Hiroshi Fujita University of Tokyo U.S. Coordinators Courant Institute of Mathematical Peter D. Lax Scicences, New York University Massachusetts Institute of Technology Gilbert Strang 2. Local Organizing Committee Hiroshi Fujita* Univ. of Tokyo SigeToshi Kuroda Univ. of Tokyo Shigeru Mizohata Kyoto Univ. Masaya Yamaguti Kyoto Univ. Emeritus Professor of Univ. of Tokyo KBsaku Yosida
3. Scientific Committee Hiroshi Fujii Hideo Kawarada Teruo Ushijima
Hiroshi Fujita* Takaaki Nishida Masaya Yamaguti
4. Executive Committee
Hiroshi Fujii Hiroshi Fujita* Asako Hatori Hideo Kawarada Katsuya Nakashima Teruo Ushijima 5 . Working Committee
Akihiko Miyachi Shin Ozawa Kunihiko Takase
*
Chairman or Chief
Hisashi Okamoto Takashi Suzuki* Masahiro Yamamoto
Lecture Notes in Num. Appl. Anal., 5 , 1-15 (1982) Nonlinear PDE in Applied Science. U . S .-Jripun Seminur. Tokyo, 1982
CONSERVATION LAWS AND THE WEAK TOPOLOGY
Ronald J . D i P e r n a Duke U n i v e r s i t y Durham, N o r t h C a r o l i n a
27706
W e s h a l l d i s c u s s some r e s u l t s c o n c e r n i n g t h e c o n v e r g e n c e o f
a p p r o x i m a t e s o l u t i o n s t o h y p e r b o l i c s y s t e m s of c o n s e r v a t i o n laws. The g e n e r a l s e t t i n g i s p r o v i d e d by a s y s t e m o f
n
conservation
laws i n o n e s p a c e dimension,
where
to
Rn.
u = u ( x , t ) € Rn
and
W e assume t h a t
t h a t i t s Jacobian has
i s s t r i c t l y hyperbolic i n t h e sense
f
n
i s a smooth n o n l i n e a r map from
f
r e a l and d i s t i n c t e i g e n v a l u e s
...
A1 With r e g a r d t o a p p r o x i m a t i o n , o n e
A n u)
.
s i n t e r e s t e d i n s e q u e n c e s of
a p p r o x i m a t e s o l u t i o n s g e n e r a t e d by p a r a b o l i c s y s t e m s
ut
+
€ ( u ) ~=
E
D uXx,
u = u (x,t)
and by f i n i t e d i f f e r e n c e schemes
atu + a X f ( u ) = 0,
u = uAx(x,t),
which a r e c o n s e r v a t i v e i n t h e s e n s e of Lax and Wendroff 1
IS].
A
Rn
2
Ronald J. DIPERNA
standard strategy for convergence seeks to establish uniform estimates on both the amplitude and derivatives of the approximate solutions in appropriate metrics and then appeal to a compactness argument to produce a subsequence that converges in the strong topology. One may regard convergence of the entire sequence as a question of uniqueness of the limit.
We recall that in the setting of hyper-
bolic conservation laws the maximum norm and the total variation norm yield a natural pair of metrics in which to investigate the stability of the solution.
The
Lm
norm measures the solution
amplitude and the total variation norm measures the solution gradient.
Their relevance for conservation laws is established by the
following theorem of Glimm [51 dealing with the stability and convergence of the approximate solutions generated by his random choice method applied to the Cauchy problem. Theorem 1.
If the total variation of the initial data
uo(x)
is
sufficiently small then a sequence of random choice approximations converges pointwise almost everywhere to a globally defined uAx distributional solution u maintaining uniform control on the amplitude and spatial variation:
TV uAx(-,t)
5 const. TV
uo
.
The constants are independent of the mesh length and depend only on the flux function f. The proof is based on a general study elementary wave interactions in the exact solution and in the random choice approximations
uAx.
It remains an open problem to prove or disprove the
corresponding estimates for conservative finite difference schemes and parabolic systems.
In the latter direction we refer the reader
3
Conservation Laws and Weak Topology
to 131 which contains an analysis of discrete wave interactions in conservative schemes together with a stability and convergence theorem for a class of methods involving the hybridization of the random choice method with first order accurate conservative methods. Here we shall discuss new compactness theorems for sequences of approximate solutions generated by diffusive systems and conservative difference schemes.
The proof involves the theory of com-
pensated compactness which originates in the work of Tartar [111 and Murat [9,lO] and the main step provides a proof of a conjecture of Tartar [ll]. The analysis appeals to the weak topology and averaged quantities rather than the strong topology and the fine scale features.
Regarding the weak topology and the elliptic conserva-
tion laws of elasticity we refer the reader to the work of Ball [l]. The principle statement is that for a class of approximation methods , which respect the entropy condition, Lm implies convergence.
stability alone
Gradient estimates are not required to pass
to the limit in the nonlinear functions. We shall first recall some background involving Tartar's work on weak convergence and compensated compactness.
Consider a se-
quence of functions un(y) : Rm which is uniformly bounded in
Lw.
+
Rn
It is well-known that one may
extract a subsequence which converges in the weak-star topology of LOD:
for all bounded un
B c Rn.
We recall that in general the sequence
need not contain a strongly convergent subsequence, i.e. a sub-
sequence converging pointwise a.e. to
u.
In particular, if
g
is
Ronald J. DIPERNA
4
a real-valued map on
Rm
However, after passing to subsequence, composite weak limits may be represented as expected values of associated probability measures in the following sense. denoted here by
There exists a subsequence of
un
(still
un) and a family of probability measures over the
range space R",
such that for all continuous
g: Rm
+
R,
The limit on the left hand side is taken in the weak-star topology of
m
L
and equality holds for almost all
notes a generic point in the range space
y
in
Rn.
Rm.
Here
X
de-
This result stems
from the work of L. C. Young and was first used in the setting of conservation laws by Tartar [ll].
It is not difficult to show that
strong convergence corresponds to the case where the representing measure
u
Y
reduces to a point mass concentrated at
u(y):
More generally, the deviation between weak and strong convergence is measured by the spreading of the support of
u
Y'
If
is
g
Lipschit z then lg(lim un)
-
lim g(un) I m
2 const. max diam spt w Y
Y
.
In the framework of conservation laws, the goal is to show that the representing measures associated with a family of exact or approxi-
5
Conservation Laws and Weak Topology
mate solutions reduces to a point mass or is contained in a set whose geometry allows one to deduce the continuity of the special nonlinear maps appearing in the equations.
In the case of a scalar
conservation law Tartar [ll] has shown that
v
mass if
v
f
is convex and that, in general,
interval where of
v
f
is affine.
Y Y
reduces to a point is supported on an
Here we shall discuss the reduction
for strictly hyperbolic systems of two equations with non-
degenerate eigenvalues.
The analysis is based on a study of the
Lax progressing entropy waves in state space [ 7 1 ,
specifically on
connections between their structure and the structure of wave patterns in the physical space, cf. I 2 1 for details and additional We also refer the reader to Lax [ 6 1 which contains a
references.
discussion of the scalar conservation law and the viscosity method in the setting of the weak topology. Before discussing the general case we shall cite an example. Consider the equations of elasticity in Lagrangian form with artificial viscosity
and assume that in
0'
> 0
Ut
-
vt
-
while
u(v)x = uX
E
u
= E V
xx xx '
sgn v u " > 0.
Lm, there exists for each fixed
E
Given initial data
a globally defined solution
the amplitude of which remains uniformly bounded as the viscosity parameter
E
vanishes,
Here the constant depends only on data.
IJ
and in the
Lm
norm of the
The bound follows from the presence of invariant regions in
the state space [14]. We claim that by appealing only to the
cu
L
stability and the entropy condition, one may extract a subsequence
6
Ronald J. DIPERNA
(uE ,uE ) which converges pointwise a.e. to a globally defined k k distributional solution of the associated hyperbolic system u
t
-
o(v)x = 0
A similar result can be established for a class of first order finite difference schemes which are based on averaging the Riemann problem, e.g. the Lax-Friedrichs scheme and Godunov's scheme. The source of the compactness in the strong topology lies in the nonlinear structure of the wave speeds and in the dissipation of generalized entropy along propagating shocks,
We shall first
recall the notion and some basic properties of generalized entropy as for mulated by Lax [ 7 ] . laws (1).
Consider a system of
n
conservation
A pair of real-valued mappings on the state space rl:
Rn
-f
R;
q: Rn
Rn
R
+
is called an entropy pair if all smooth solutions of (1) satisfy an addition conservation law of the form
For the purposes at hand we shall restrict our attention to the
n
class of systems having an entropy pair with
strictly convex.
As observed by Lax and Friedrichs [151 this class includes the
basic systems of continuum mechanics.
Furthermore, Lax [ 7 ] showed
that all strictly hyperbolic systems of two equations has at least a locally defined strictly convex entropy and that a broad class has a globally defined strictly convex entropy. bility condition which links the entropy be derived as follows.
Suppose
u(x,t)
n
The basic compati-
to its flux
is a
C1
g
may
solution and
7
Conservation Laws and Weak Topology
consider the quasilinear forms of the systems of conservation laws
(1) together with the extension ( 3 ) u t
:
+ Of(u)ux
By replacing the time derivative of
= 0
u
by the spatial derivative
we find that ( 3 ) is equivalent to
Hence the condition (5)
Vn(u) Vf(u) = Vq(u),
u
Rn
€
is a necessary and sufficient for the existence of an entropy pair. We observe that (5) represents a system of
n
linear, variable
coefficient partial differential equations in two unknowns q.
If
n > 2
n
and
it is formally over determined but fortunately has
a (convex) solution in the setting of mechanics.
Concerning the
structure of ( 5 ) we recall the observation of Loewner that the compatibility condition ( 5 ) retains the same classification as the original system (1). In our setting the demonstration that ( 5 ) is hyperbolic is straightforward: consider the right eigenvectors of the Jacobian of
f Vf(u) r .(u) = A . (u) r.(u) 3
3
3
Taking the inner product of ( 5 ) with
r. 3
.
immediately yields the
characteristic form of ( 4 ) : (A.
3
On
-
Vq)
-r
j
= 0,
j = 1,2
In the following discussion we shall be mainly interested in the determinate case
n = 2 which can be illustrated with a variety of
8
Ronald J . DIPERNA examples.
In particular,
it i s u s e f u l t o k e e p i n mind t h a t t h e
s m o o t h m o t i o n o f a n e l a s t i c medium w h i c h c o n s e r v e s mass a n d momentum also c o n s e r v e s m e c h a n i c a l e n e r g y .
The c o n v e x f u n c t i o n
rl
F o r s y s t e m ( 2 ) o n e may t a k e
serves as a generalized entropy f o r (2)
with generalized entropy flux q = u C(v)
The i d e n t i t y ( 5 ) s t a t e s t h e t i m e r a t e o f c h a n g e o f m e c h a n i c a l e n e r gy i s b a l a n c e d by t h e r a t e a t w h i c h t h e s t r e s s t e n s o r p e r f o r m s w o r k . Within t h e class of c o n s e r v a t i o n l a w s w i t h a convex e x t e n s i o n
i t i s s t a n d a r d t o impose t h e Lax e n t r o p y i n e q u a l i t y
o n weak s o l u t i o n s
u(x,t)
f o r t h e p u r p o s e of d i s t i n g u i s h i n g t h e
p h y s i c a l l y r e l e v a n t weak s o l u t i o n s f r o m t h e s e t o f a l l p o s s i b l e w e a k solutions.
Solutions s a t i s f y i n g (6) are c a l l e d admissible.
t h a t t h e d i s t r i b u t i o n a l i n e q u a l i t y i s meaningful i f l o c a l l y bounded f u n c t i o n .
u
We n o t e
is merely a
F o r o u r c u r r e n t p u r p o s e s w e s h a l l re-
s t r i c t o u r a t t e n t i o n t o weak s o l u t i o n s w h i c h l i e i n t h e s p a c e Lm n B V .
Here
BV
denotes t h e class of f u n c t i o n s of s e v e r a l v a r i -
a b l e s w h i c h h a v e bounded v a r i a t i o n i n t h e s e n s e of C e s a r i , 1 . e . f i r s t o r d e r p a r t i a l d e r i v a t i v e s r e p r e s e n t a b l e a s l o c a l l y bounded Bore1 m e a s u r e s [ 4 , 1 2 1 . m
E x p e r i e n c e w i t h c o n s e r v a t i o n l a w s h a s shown
is a n a t u r a l function space f o r t h e s o l u t i o n opera-
that
L
tor.
I n t h i s connection w e n o t e t h a t s o l u t i o n s constructed by t h e
3 BV
random c h o i c e m e t h o d l i e i n t h e s p a c e s t a b i l i t y e s t i m a t e s o f t h e o r e m 1.
strate t h a t t h e measure
Lm n BV
Within
Lm
by v i r t u e o f t h e BV
o n e c a n demon-
9
Conservation Laws and Weak Topology
i s c o n c e n t r a t e d o n t h e s h o c k s e t of
r(u)
u , i.e.
the solution
t h e set o f p o i n t s of d i s c o n t i n u i t y a n d c o n s e q u e n t l y t h a t t h e e n t r o p y i n e q u a l i t y ( 5 ) h o l d s i f and o n l y i f a l l shock waves i n
u
dissipate
generalized entropy:
f o r a l l Bore1
E C r(u).
This i n e q u a l i t y reduces t o t h e second l a w F i n a l l y , we s h a l l
o f t h e r m o d y n a m i c s i n t h e s e t t i n g of f l u i d f l o w .
r e s t r i c t a t t e n t i o n t o systems w i t h non-degenerate e i g e n v a l u e s , 1.e. s y s t e m s f o r w h i c h t h e wave s p e e d s a r e m o n o t o n e f u n c t i o n s of t h e wave a m p l i t u d e s .
X
T e c h n i c a l l y w e assume t h a t
i s monotone i n
j
t h e corresponding eigendirection: r . 3
(7)
- BX. # 3
W e n o t e t h a t t h e g e n u i n e n o n l i n e a r i t y c o n d i t i o n ( 7 1 i n t r o d u c e d by
Lax [16] i s s a t i s f i e d b y s e v e r a l s y s t e m s o f i n t e r e s t :
the isentro-
p i c e q u a t i o n s of g a s d y n a m i c s f o r a p o l y t r o p i c g a s , t h e e q u a t i o n s
of s h a l l o w w a t e r waves, t h e e q u a t i o n s of e l a s t i c i t y i f Theorem 2 .
0''
# 0.
Consider a s t r i c t l y h y p e r b o l i c g e n u i n e l y n o n l i n e a r sys-
t e m of two c o n s e r v a t i o n l a w s w i t h a s t r i c t l y convex e n t r o p y . pose
un
i s a s e q u e n c e of a d m i s s i b l e s o l u t i o n s i n
where t h e c o n s t a n t
M
i s independent o f
sequence t h a t converges pointwise a.e.
Lm n BV.
SupIf
n , t h e r e e x i s t s a sub-
t o an admissible s o l u t i o n .
Thus t h e e x a c t s o l u t i o n operator r e s t r i c t e d t o a d m i s s i b l e s o l u t i o n s forms a compact m a p p i n g f r o m
Lw
to
1 Lloc.
The s o u r c e
Ronald .I.DIPERNA
10
of t h e c o m p a c t n e s s l i e s i n t h e l o s s o f i n f o r m a t i o n a s s o c i a t e d w i t h
a d m i s s b l e s h o c k waves a n d i n t h e n o n l i n e a r s t r u c t u r e o f t h e e i g e n W e emphasize t h a t t h e compactness i s e s t a b l i s h e d w i t h o u t
values
d e r i v a t i v e estimates. Next, w e s h a l l d i s c u s s t h e compactness of s o l u t i o n sequences g e n e r a t e d by d i f f u s i o n p r o c e s s e s
+
ut
(8)
D
where f o r s i m p l i c i t y
f
(
~ = )F ~Du
is a c o n s t a n t
xx' n
x
n
I n order to
matrix.
e n s u r e correct e n t r o p y p r o d u c t i o n i n t h e l i m i t a s
E
vanishes, it
i s s u f f i c i e n t (and n e a r l y n e c e s s a r y ) t o r e q u i r e t h a t t h e d i f f u s i o n matrix
D
b e non-negative w i t h r e s p e c t t o t h e second d e r i v a t i v e o f
n, i . e . 2 0 r l D ~ O .
With r e g a r d t o t h e g e n e r a l q u e s t i o n o f a d m i s s i b i l i t y s h o c k s t r u c t u r e and p r o p e r d i f f u s i o n matrices w e r e f e r t h e r e a d e r t o R.
Peg0
[17,18].
-___ Theorem 3.
Suppose
l i n e a r map o n
RL
f
i s a s t r i c t l y h y p e r b o l i c g e n u i n e l y non-
w i t h a s t r i c t l y convex e n t r o p y
t h a t the diffusion matrix V
2
n.
If
uE.
D
n
and suppose
i s p o s i t i v e d e f i n i t e w i t h respect t o
i s a s e q u e n c e of s m o o t h s o l u t i o n s t o ( 8 ) s a t i s f y i n g
t h e r e e x i s t s a subsequence which converges p o i n t w i s e a . e . admissible solution
u
o f t h e a s s o c i a t e d h y p e r b o l i c system ( 1 ) .
Hence t h e s o l u t i o n o p e r a t o r s
SE
of t h e p a r a b o l i c s y s t e m ( 8 )
p r o v i d e a f a m i l y o f m a p p i n g s w h i c h i s compact f r o m uniformly with t o
E
~
t o an
Lm
to
1
Lloc
The c o m p a c t n e s s p r e s e n t a t t h e h y p e r b o l i c
l e v e l is preserved uniformly i n
E
provided t h a t t h e d i f f u s i o n
Conservation Laws and Weak Topology
11
matrix enduces favorable entropy production in the limit. In the setting of continuum mechanics we recall that the standard diffusion matrices are merely positive semi-definite because mass diffusion is neglected.
However with additional work one can
establish the corresponding result. Theorem 4.
Suppose that
(p,,uE)
is a sequence of smooth solu-
tions of compressible Navier-Stokes
for a polytropic gas
If the flow is uniformly
p = A p Y , y > 1.
bounded and avoids the vacuum state, i.e.
then there exists a subsequence which converges pointwise a.e. to an admissible solution of the compressible Euler equations.
We note
that the compressible Euler equations losses its strict hyperbolicity at the vacuum state.
It is an interesting open problem to
establish the corresponding result without the hypothesized uniform lower bound on the density
p.
At a more fundamental level, it re-
mains an open problem to prove uniform circumstances.
Lm
estimates in general
For example in the case of hyperbolic systems (l),
it remains an open problem to prove that
for admissible solutions in
Lm
BV
with small data.
The esti-
mate (9) is motivated by physical considerations but has only been verified for solutions constructed by the random choice method. The proof of the theorems described above utilizes the theory
12
Ronald J . DIPERNA
of compensated compactness.
In this connection we refer the reader
to the work of Tartar [ll] and Murat [ 9 , 1 0 1
and to the forthcoming
Proceedings of the NATO/LMS Advanced Study Institute on Systems of Nonlinear Partial Differential Equations held at Oxford 1982 and organized by J. Ball et al.
Here we shall simply mention one of
the problems which the theory addresses: functions g(u) : Rn
+
characterize the nonlinear
which are continuous in the weak topology
R
when restricted to sequences of functions
un(y) : Rm
-+
Rn
which
satisfy linear constant coefficient partial differential constraints. As an example we mention a result from electrostatics which historically motivated the general theory.
Consider vector
fields z
n *' R3
converging weakly in
+
and
R3
wn: R3
-f
R3
L2 2
n +z;
w n + w .
is controlled as well as the Zn to the extent that both the sequences of distri-
Suppose that the expansion in rotation in
wn
but ions div zn
and
curl wn
-1 Here Hloc. distinguished linear combinations of partial derivatives are com-
lie in a compact subset of the negative Sobolev space
pact after the loss of one derivative.
Under these circumstances
there is precisely one smooth real-valued function is continuous in the weak topology, i.e. satisfies
and its given by the inner product
@(z,w)
which
13
Conservation Laws and Weak Topology
@(Z,W) = . Although, in general, the individual terms
zjwj
of the inner pro-
duct are not weakly continuous, there exists compensation among the terms of the sum 3
=
z
zjwj
j=1
which allows for weak continuity. From the point of view of electrostatics, there is precisely one quantity, the electrostatic energy density which can be measured, provided one agrees that the process of measurement is modeled by averaged quantities. For the purpose of applications to conservation laws, let us recall the duality between the divergence and the curl in theplane, div z = curl z* where
z*
denotes the orthogonal complement of
z
and consider
the basic entropy inequality formulated with respect to two distinct entropy pairs
(qj,qj)
j = 1,2.
If, for example,
sequence of admissible weak solutions in
Lm r) BV
un
is a
it can be shown,
by appealing to Sobolev embedding, that the sequence of distribut ions
lies in a compact subset of
-1 Hloc
if
rl
is convex and consequent-
ly that rl.
J lies in a compact subset of
(un) + q . (un) t ’ x Hloc
for arbitrary
Thus
(nl,ql) and the curl of the -1 (-q2,n2) both lie in a compact subset of Hloc.
the divergence of the entropy field entropy field
(rlj,qj).
Ronald J. DIPERNA
14
The continuity of the inner product yields a commutativity relation for the representing measure j = 1,2
where
u.
For all entropy pairs
(nj,qj),
we have
11
denotes representing measure at an arbitrary point, i.e.
Tartar showed that (9) implies v is a Dirac measure (x,t)for a genuinely nonlinear scalar conservation law. In [21 it is
v = u
shown using the Lax progressing entropy waves that (9) implies that v
is a point mass for general genuinely nonlinear systems of two
equations and for the special case of elasticity which has a linear degeneracy alone an isolated curve.
References
[l]
Ball, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977) 337-403.
[2]
DiPerna, R. J., Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal., to appear, (1983).
[3]
DiPerna, R. J., Finite difference schemes for conservation laws, Comm. Pure Applied Math. 25 (1982) 379-450.
141
Federer, H., Geometric Measure Theory (Springer, New York, 1969).
[51
Glimm, J., Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965) 697715.
[61
Lax, P. D., Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure Appl. Math. 7 (1954) 159-193.
[7]
Lax, P. D., Shock waves and entropy, in Contributions to nonlinear functional analysis, e.d. E . A. Zarantonello, Academic Press, (1971) 603-634.
[8]
Lax, P. D. and B. Wendroff, Systems of conservation laws, Comm. Pure Appl. Math. 13 (1960) 217-237.
Conservation Laws and Weak Topology
15
Murat, F., Compacit6 par compensation, Ann. Scuola Norm. Sup. Pisa 5 ( 1 9 7 8 ) 4 8 9 - 5 0 7 . Murat, F., Compacit6 par compensation: Condition necessaire et suffisante de continuite faible sous une hypotheses de rang constant, Ann. Scula Norm. Sup. 8 ( 1 9 8 1 ) 6 9 - 1 0 2 . Tartar, L., Compensated compactness and applications to partial differential equations, in Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 4, Ed. R. J. Knops, Pitman Press, 1 9 7 9 . Vol'pert, A. I., The spaces BV and quasilinear equations, Math. USSR, Sb. 2 ( 1 9 6 7 ) 2 5 7 - 2 6 7 . Dacoroqna, B., Weak continuity and weak lower semicontinuity of nonlinear functionals, Lefschetz Center for Dynamical Systems Lecture Notes # 8 1 - 7 7 , Brown University, ( 1 9 8 1 ) . 1141
Chueh, K. N., Conley, C. C. and J. A. Smoller, Positivity invariant regions for systems of nonlinear diffusion equations, Indiana Math. J. 26 ( 1 9 7 7 ) 3 7 3 - 3 9 0 . Friedrichs, K. 0. and P. D. Lax, Systems of conservation laws with a convex extension, Proc. Mat. Acad. Sci. USA 6 8 ( 1 9 7 1 ) 1686-1688.
Lax, P. D., Hyperbolic systems of conservation laws 11, Comm. Pure Appl. Math. 10 ( 1 9 5 7 ) 5 3 7 - 5 6 6 . Pego, R., Viscosity matrices for a system of conservation laws, Center for Pure and Applied Mathematics, University of California, Berkeley, preprint. Peqo, R., Linearized stability of shock profiles, CPAM, University of California, Berkeley, preprint.
This Page Intentionally Left Blank
Lecture Notes in Num. Appl. Anal.,5 , 17-35 (1982) Nonlinear PDE i i i Applied Science. U S . - J t i p t i n Seininur, Tokyo, 1982
Global Bifurcation Diagram in Nonlinear Iliffision Systems Hiroshi FUJI1 and Yasumasa NISHIURA Department of Computer Sciences Faculty of Science Kyoto Sangyo University Kyoto 603, JAPAN.
51.
Introduction Global phenomena of pattern formation in systems of reaction-diffusion equa-
tions is the main theme of the present paper. The system is written as ut = dluxx
+
f(u,v) in (t,x)
where I = ( O , n ) , and a 1
E (O,+m) x
I,
its boundary. The system (P) is assumed to possess
Turing's diffusion induced instability, whichappearstypically in mathematical biology [ 7 ] .
I n other words, we are interested in the structure of global bifurca-
2 tion diagram - "global" with respect to the two diffusion parameters (dl,dZ) E R + -
of the following stationary system : d u
1 xx
1
-v c1
xx
+
f(u,v) = 0, in I,
+
g(u,v) = 0,
with the boundary conditions (P), on 3 1 ; here, we put d 2 = l/a. The system (P) has been studied by a number of authors from various kind of viewpoints.
In particular, the bifurcation theoretic work of Mimura, Nishiura and
Yamaguti [ 3 ] has motivated the studies which succeed, such as Mimura, Tabata and Hosono [ 4 ] who studiedthe singular limit dl i Oof (SP) u s i n g t h e s i n g u l a r p e r t u r b a t i o n 17
I8
Hiroshi FUJIIand Yasumasa NISHIURA
technique; the second author [ 5 ] has obtained a complete bifurcation diagram with respect to dl of (SP) in the limit case d2 t +m(i.e,, called the shadow system.
ci
C 0). His limit system is
The first author has developed a new numerical algorithm
to detect and trace all bifurcating branches using a group theoreticmethod [ Z Fujii, Mimura and Nishiura
1.
1 ] studied local structures of (SP) near double bifur-
cation points (adopting a group theoretic argument), and drew a global picture of bifurcation diagram, integrating the above analytical and numerical results. The purpose of this paper is, in part, to give a survey of those works, and in part, to describe new results which have been obtained after the publication of [ 1
1.
Our method is based on the study of:
(1)
local structure at double bifurcation points introducing the Lie group ",I
(2)
the complete bifurcati.on analysis of the shadow system [ 5 1 ,
(3)
the singular-shadow limit of d2 I.
+m,
11,
d 1 C 0 - which we call the singular-
shadow edge, (4) the structure of "singular solutions" at the singular limit dl C 0, and
(5) an integration of these analytical results to have a global picture of bifurcating branches. A key in our paper is the discovery of singular branches which possess both
boundary and interior transition layers, and of singular limit points as its consequence. We shall see in the present paper that t h e s t r u c t u r e of s o k i t i o n s a t t h e singular-shadow edge seems t o play t h e r o l e of "organizing centre" of t h e whole global s t r u c t u r e . The solution space for the system (SP) will be R:
X is the Hilbert space EiN2
2 2
= (HN)
2 = (H ( I )
x X ( 3
((dl,cl) ,U),
where
fl (the boundary conditions (P),)).
We state the assumptions on the nonlinearities f and g. ( A . 1) ( i ) There exists a unique constant solution U =
G
=
(6,i)
> 0 of
(SP). See,
Fig. 0.1. (ii ) 0 is a stable solution of the kinetic system of (P). matrix at
u,
B
= {J(f,g)/>(u,v))lo,
satisfies tr(B) < 0 and
I.e., the Jacobian det(B) > 0.
(iii) ( P ) is an activator-inhibitor system, 1.e.. the elements of B have the
Global Bifurcation Diagram
19
sign
=
[
bll
b12
b21
bz2]=[:
I]
The z e r o l e v e l c u r v e o f f ( u , v ) i s S-shaped and f < 0 i n t h e u p p e r r e g i o n
(A.2)
of t h e sigmoidal curve.
u+ 1
(v)
for
v
E
A
..
Fig .O.1 ; f = 0 h a s t h r e e r e a l r o o t s u - , ( v )
1";:::
f(s,v)ds.
Then, J ( v ) = 0 h o l d s i f and o n l y i f v = q * € 2 , and Let
0 ( [ l ] ) .
r1,2
i s shown in
Note, however, t h a t t h e d e s t i n a t i o n of t h e
pr ima r y D - b r a n c h i s n o t i n d i c a t e d i n t h i s d i a g r a m , as w e l l as t h o s e of t h e seco n 1 dary branches of t h e D -branch. 2
Fig. 1.2.
Fig. 1.3.
Schematic Bifurcation Diagram near
Local Bifurcation Diagram near
r 1,z
r
I'
(p11420
' O)-
22
Hiroshi FUJIIand Yasurnasa NISHIURA I f one u n f o l d s ( 1 . 2 ) near t h e d e g e n e r a t e parameter v a l u e s pl1qz0 = 0 , an
r
r e v e a l s i t s e l f . In f a c t , as may 1,2 be t h e c a s e f o r t h e May-Mimura model ( 0 . 2 ) , l e t u s suppose t h a t q 20= q20 # 0, and i n t e r e s t i n g l o c a l b i f u r c a t i o n s t r u c t u r e near
l e t p l l be t h e u n f o l d i n g parameter as ( p
ll
I
< 6
(6 : s u f f i c i e n t l y s m a l l ) . 0
The b i -
f u r c a t i o n diagram t h u s o b t a i n e d a r e s h o w n i n F i g s . (1.4), and ( 1 . 4 ) b , which c o r r e s > 0 and pond r e s p e c t i v e l y t o t h e c a s e qo p 20 11
< 0, f o r / p l l l < 6 0 .
Fig. 1.4 Fig. 1 , 4b ,r The 'ID p o t near rl,z; 2 i s a simple degenerate singular p o i n t of e l l i p t i c t y p e ( l a ) , p l 1 q z 0 I 1 0 ) ; of hyperbolic type ((bi, pl1qz0 < 0 ) .
Z
1
i s a simple d e g e n e r a t e s i n g u l a r p o i n t placed on t h e D2-sheet, r e s p e c t i v e l y
< 0. of e l l i p t i c t y p e when qiopll > 0 , and of h y p e r b o l i c t y p e when qo p 20 11
tends t o zero, Z
1
approaches t o t h e double b i f u r c a t i o n p o i n t
r 1,2.
A s pll
Thus, one s e e s
t h a t t h e primary s h e e t D2 has a secondary b i f u r c a t i o n l i n e , which p a s s e s Z l and
rl,2.
See, F i g . l . 5 .
I f one l e t t h e parameters ( d l , d Z ) c r o s s t h i s l i n e from t h e
r i g h t t o t h e l e f t , t h e D -sheet recovers i t s s t a b i l i t y 2
-
hence, t h i s secondary l i n e
i s c a l l e d t h e recovery l i n e of t h e D2-sheet. A remarkable f a c t i n t h e s e diagrams i s t h a t i n b o t h c a s e s t h e r e a p p e a r s a
p o t - l i k e " s t r u c t u r e due t o t h e e x i s t e n c e of
r 1,2.
We n o t e t h a t t h i s p o t - l i k e
''
23
Global Bifurcation Diagram s t r u c t u r e has been p r e d i c t e d numerically i n [ l
fold-up p r i n c i p l e ([l]),
1.
A remark i s t h a t due t o t h e
every D -3rimary s h e e t t a k e s t h e p o t - l i k e form, t h e o r i g i n
of which i s a degenerate simple s i n g u l a r i t y Z
l o c a t e d on t h e D
2n
-sheet.
The b a s i c q u e s t i o n i s t h e g l o b a l behavior o f t h i s "pot", and a l s o o f t h e o t h e r secondary branch born a t
r1,*.
I t i s a l s o worthy of n o t i n g t h a t from
r2,3,
there
appears a secondary b i f u r c a t i o n l i n e o f D2 - which a c t u a l l y corresponds t o t h e p o i n t s where D 2 l o s e s i t s s t a b i l i t y a g a i n .
losing l i n e of D 2 .
Between
of t h e primary D - s h e e t . 2
Fig. 2 . 1 .
r 1,2
and
r2,3,
Hence, t h i s l i n e may be c a l l e d t h e one s e e s an o u t c r o p o f t h e s t a b l e r e g i o n
See, F i g . l . 5 .
The Shadow Branches and their extension t o a
Fig. 1 . 5 .
0.
The recovery and losing l i n e s o f the D 2 sheet;
the shaded p a r t shows the s t a b l e region. 12. -
By t h e shadow c e i l i n g we mean t h e l i m i t space IR+
x
X of a C 0 .
If solutions
o f (SP) a r e uniformly L_-bounded with r e s p e c t t o d l and a, one may have t h e l i m i t system : in I,
with t h e boundary c o n d i t i o n u
=
0 on 2 1 , where v = n i s a constant f u n c t i o n .
second e q u a t i o n comes from t h e i n t e g r a t i o n of (SP)2 o v e r t h e i n t e r v a l I .
The The
system (SS) i s c a l l e d t h e shadow system f o r ( S P ) . The g l o b a l behavior o f s o l u t i o n s of (SS) with r e s p e c t t o dl C 0 i s t h e f i r s t
24
Hiroshi
Full1
and Yasurnasa N I S H I U R A
o b j e c t of t h e study h e r e , which i s expected t o approximate t h e g l o b a l behavior o f In f a c t , a complete b i f u r c a t i o n
s o l u t i o n s o f (SP) f o r s u f f i c i e n t l y small a > 0.
diagram f o r (SS) has been o b t a i n e d by t h e second a u t h o r [ 6 ] .
i 0.
t h e n-mode branches
b emanating from (2'n' D). Fig.2.1.
En
in
= 2,3,
... )
conti-
Bh t h e fold-up p r i n c i p l e , t h e same c o n c l u si o n holds t o
nues t o mist as dl
es
fl)
ii) The one-mode bifurcating branch b, emanating from Id;,
Theorem 2 . 1 .
i i i l These shadow branch-
Jo not recover t h e i r s t a b i l i t g on t h e way t o t h e l i m i t dl
and consequently, they have no secondary branches i n a generic sense.
i 0,
Hence, o n l y
the 6 -branch i s the s t a b l e one among t h e branches on t h e shadow c e i l i n g . i Theorem 2.2.
the statement Iil o f Theorem 2.1
The global e x i s t e n c e r e s u l t , i . e . ,
holds as w e l l f o r the bifurcating branches Dn's In = 1 , 2 , . . )
o f ( S P i f o r smaZl .a
Namely, every bifurcating branch h i t s the sing u l a r wall dl = 0 f o r small
> 0.
3
See, F i g . 2 . 1 .
>. 0 .
I t should be noted t h a t t h e s t a t e m e n t ( i i . ) of Theorem 2 . 1 does no more hold f o r t h e primary branches D ' s of (SP) even f o r s u f f i c i e n t l y small a > 0 , except f o r
n = 1. §3.
The s i n g u l a r shadow edge - Edge c o n t i n u a The s t u d y of t h e l i m i t dl i 0 of t h e shadow system (SS) p l a y s
subsequent d i s c u s s i o n s .
The reduced shadow system a s dl
J.
a key r o l e i n
0 i s d e f i n e d by
f(u,n) = 0, (RSS)
I, A s o l u t i o n (u,q)
g ( u , n ) dx = 0 . E
X
(where v =
a reduced shadow s o l u t i o n , where Xo
rl
i s a constan t f u n c t i o n ) o f (RSS) i s c a l l e d
2 L (I)
=
o f s o l u t i o n s a s compared with (SS) o r (SP). Suppose C Q ( n ) ,
Q = 0 , :l,
2
HN(I).
x
The system (KSS) has a v a s t
I n f a c t , one takes n~ A a r b i t r a r i l y .
a r e t h e t h r e e s o l u t i o n s of (RSS)l.
See, (A.2).
Let
u ( q ; x ) be any s t e p f u n c t i o n i n which u ( q ; x ) t a k e s e i t h e r of c Q [ q ) , Q = 0 , +1, f o r almost a l l x
E
I.
Let I e ( q ) = t x
E
I
I u(n;x)
=
5 a. ( n ) ) ,
9. = 0 ,
+l.
Then, (RSS)2
25
Global Bifurcation Diagram reduces t o +I
e (Q) I
where 11
= measure o f I
Thus, f o r any
E
e (n), a. =
0 , "1
A , i f one c h o o s e s I L [ q ) , 9. = 0, +1, so a s t o s a t i s f y ( 3 . 1 ) ,
t h e c o r r e s p o n d i n g s t e p f u n c t i o n i s a r e d u c e d shadow s o l u t i o n o f (RSS).
See, Fig.
Note t h a t t h e r e a r e many such s t e p f u n c t i o n s , s i n c e o n l y t h e r a t i o o f 11 ( 0 ) I e
3.1.
' s h a s t h e meaning i n ( 3 . 1 ) .
Fig. 3 . 2 . The S i n g u l a r Shadow L i m i t Solution
Fig. 3. I.
=
(n
1).
Among t h e reduced shadow s o l u t i o n s , we p i c k up t h o s e which s a t i s f y t h e r e l a tion :
and w r i t e them a s (:*(x)
1
n*) I I:1
g(E;+l ( n * ) ,
(3.2)
,rl*).
+
g(F-l
(q*),
n*) I I*1
Let u"i(x) be a f u n c t i o n of
I
=
0,
{ u"*(x) }
t e n s i o n of which ( c o n s i d e r e d a s a p e r i o d i c f u n c t i o n o n t h e c i r c l e e x a c t l y n i n t e r v a l s o f I:1 Namely, .";(x)
F i n a l l y , l e t u;(x)
{
be a f u n c t i o n o f
tuated sense. the i n t e r v a l
The shadow branch See, F i g . 3 . 2 f o r n
7-
discontinuity of
(;c~-K,z~+K)
has
u"*(x) } which h a s n boundary d i s c o n t i n u i t i e s . {
v a r i a n t under t h e group a c t i o n D .
Theorem 3.1.
[-T,T])
(For t h e d e f i n i t i o n of q*, s e e ( O . l ) . )
( and o f IT1).
i s a f u n c t i o n of
, t h e even ex-
, t h e even e x t e n s i o n of which i s i n -
&(x) }
We have t h e f o l l o w i n g
converges t o (u;(x),n*) =
1.
f o r any
a s dl c 0 i n t h e punc-
NameZy, it converges to u*(xI uniformZy on K
>
0, where
I x; 1
irl
are t h e p o i n t s of
u * ( x ) and the Zocation o f each d i s c o n t i n u i t y i s determined by
(3.2).
One may t h u s c a l l (u;(x),q*)
the En-limit
solution.
26
Hiroshi Full1 and Yasurnasa
NlSHlURA
The s e t o f f u n c t i o n s { .“*(x) } can be o b t a i n e d from t h e l i m i t s o l u t i o n uA(x) by a t r a n s l a t i o n , an extension, o r a c o n t r a c t i o n o f i n t e r v a l s o f t h e b l o c k s o f u:(x),
so l o n g a s such an o p e r a t i o n keeps t h e r a t i o
1 I:1 I
d i v i s i o n o f a b l o c k o f u * ( x ) y i e l d s a f u n c t i o n o f { ;;+2k(x) ‘L
Thus, t h e s e t [ u * ( x )
1
/
1 I:1 1 .
(Note t h a t a
1 ( f o r some k 2 1 ) .)
may c o n s i s t of a s e t o f o n e - p a r a m e t e r f a m i l i e s o f f u n c t i o n s ,
i n c l u d i n g t h e l i m i t s t a t e u * ( x ) - which we c a l l t h e edge continua.
An example i s
i l l u s t r a t e d i n F i g . 3 . 3 , where t h e c o n t i n u a o f t h e u * ( x ) and u * ( x ) a r e shown. 2 4
+
Fig.3.3.
of u $ ( x ) and u i i x ) , formed by t r a n s l a t i o n s of b l o c k s .
Edge continua
Note t h a t t h e terminal s t a t e s ( t h e r i g h t and l e f t p i c t u r e s ) are d i f f e r e n t from u f i x ) ( u p p e r ) , and u 2 l x ) ( l o w e r ) , s i n c e they c o n t a i n “sZitst’ a t x
54.
=
0, 5 2 or
T .
View on t h e s i n g u l a r w a l l By t h e s i n g u l a r w a l l , we mean t h e l i m i t s p a c e R +
x
Xo
( 3
( ~ , ( u , v ) ) )of d l + 0 .
The g o a l o f t h i s s e c t i o n i s t h e s t u d y o f t h e s t r u c t u r e of s o l u t i o n s on t h e s i n g u l a r wall o f : f ( u , v ) = 0, in I,
(RP)
1
- v xx ‘y v
=
+
0,
g(u,v) = 0, on aI.
The system ( R P ) i s c a l l e d t h e reduced problem o f ( S P ) , and i t s s o l u t i o n s reduced
solutions.
However, we a r e o n l y i n t e r e s t e d i n s u c h r e d u c e d s o l u t i o n s t h a t from
which we can e x t r a c t smooth s o l u t i o n s o f (SP) f o r ( s m a l l ) p o s i t i v e d l 4 0 .
Such
l i m i t s o l u t i o n s w i l l be c a l l e d singular s o l u t i o n s ( , a n d a singular branch i f it
21
Global Bifurcation Diagram consists of a one-parameter family of singular solutions). Let S
denote the set of singular solutions. We associate t o So the follow-
ing asymptotic norm.
For U = (u,v)
/ / u / (=~ lim /I
E
S0 ’ the asymptotic norm l l U / l s is defined by
(u(E;x),v(E;,x)
ESO
where (u(E;,x),v(E;,x))
is a family of solutions of (SP) which converges to U as
in the punctuated sense, and
E=%
Mimura, Tabata and Hosono [ 4 ] have found a family of singular branches with interior transition layers for sufficiently small a
0. On the singular wall,
>
these singular branches correspond to the double solid lines in Fig.4.1. At a = U, they start from the singular-shadow s o l u t i o n s (u;,n*) connect to the shadow branches b
(n=1,2,. . . ) , and
hence
(n=1,2,.. . ) at the edge.
Fig. 4.1.
In the following, we consider only one-mode type of solutions for simplicity of presentation. As in 13, one may choose an have u = h(q;v), where h ( q ; v ) = h-l(v) for v Substitution of u
=
(4.1)
a
(x)
E
1 C (I), 0
= 0 to
rt(Fig.4.2).
h(n;v) into (RP)2 leads to a scalor equation for v: v
xx
+
where G(n;v) = g(h(n;v),v).
Eq. (4.1) with vx
ri E
G(ri;v) = 0 ,
x
E
I,
Note that G(n;v) has a discontinuity in v at v = r t .
0 on 2 1 , has an Y -family of strictly increasing solutions V:” < x1
for each n
E
A.
Let Un’a(x) 1
=
h(n;V:s
(x)).
According to
Hiroshi FUJIIand Yasumasa NISHILIRA
28
h a s a d i s c o n t i n u i t y a t x = x*
t h e c o n s t r u c t i o n , t h e f u n c t i o n U:"(x) c o u p l e (U:"
E
I.
Then, t h e
0 < a < a l , i s an a - f a m i l y o f r e d u c e d s o l u t i o n s f o r each rl
,V:a),
E
A.
A q u e s t i o n i s t h a t when a m a l l d i f f u s i o n d l > 0 i s i n t r o d u c e d t o (RP)l, u n d e r
what c o n d i t i o n s t h e d i s c o n t i n u i t y of Uy'acan b e smoothed o u t by a n i n t e r i o r t r a n s i tion layer.
The f o l l o w i n g r e s u l t h a s b een o b t a i n e d i n [ 4 ] :
I f the F i f e condition
a s s uumption ( A . 3 ) , t h e r e e x i s t s a u n i q u e s e p a r a t i o n p o i n t (4.2).
Q=Q*,
which s a t i s f i e s
Hence, f o l l o w s an z - f a m i l y o f s i n g u l a r s o l u t i o n s w i t h an i n t e r i o r t r a n s i -
',v:")
t i o n l a y e r 3 = {(u:'
E
E-]IQf)
x0,
:
0 < a < z;).
,
,
I
I
& ' c+llll') u
PI(a)
ctI(o)
E!I(a)
f:I(a)
Fig. 4 . 2 . As i s remarked i n [ l ] , t h i s s i n g u l a r b r an ch w i t h an i n t e r i o r t r a n s i t i o n l a y e r
c e a s e s t o e x i s t a s a r e a c h e s a:. the nonlinearity 1)
f
See, F i g . 4 . 1 .
Fig.4.2
i l l u s t r a t e s t h a t p a r t of
which i s a c t u a l l y u s e d by a s i n g u l a r s o l u t i o n If:*'" (x) of ( 4 .
( the solid line ).
Since t h e numerical range
(v,(k),vMQ))
o f V:*'l
monotone i n c r e a s i n g w i t h r e s p e c t t o a 1 0 , i t i s e a s i l y s e e n t h a t , as
one of v
m ( a ) and v M ( 2 ) r e a c h e s f i n a l l y t o t h e extremum v a l u e s
or
n
I
(x) i s increases,
of f .
This
i s t h e r e a s o n why t h e s i n g u l a r b r a n c h c e a s e s i t s e x i s t e n c e a t a = z s . I t i s wondered w h eth er t h i s i s a l l t h e e x i s t i n g s i n g u l a r b r a n c h e s , and what happens a t t h e " c r i t i c a l p o i n t " a = a: which h a s be e n
left
on t h e s i n g u l a r w a l l .
This i s a question
open f o r a lo n g t i m e . The answ er i s t h a t t h e re appears
another singular branch f~orncx; upwards t o a
J- 0. S e e , b r o k en l i n e s i n F i g . 4 . 1 .
29
Global Bifurcation Diagram T h i s new b r a n c h i s c h a r a c t e r i z e d by :hat tion layers.
i t h a s b o t h boundary and i n t e r i o r t r a n s i -
Hence, we s h a l l c a l l it t h e singular branch o i t h boundary and i n t e r i o r
transition layers.
The c r i t i c a l p o i n t ctc w i l l be c a l l e d t h e singular l i m i t p o i n t . 1
The d e t a i l e d c o n s t r u c t i o n and p r o o f s w i l l be p u b l i s h e d e l s e w h e r e . However, i t s h o u l d be remarked t h a t such a s i n g u l a r s o l u t i o n can not be c o n s t r u c t e d w i t h i n t h e F i f e
s e t t i n g a s i n [4]. Moreover, t h e "boundary l a y e r " t h u s c o n s t r u c t e d i s c o m p l e t e l y d i f f e r e n t i n n a t u r e from boundary l a y e r s o b s e r v e d i n D i r i c h l e t b o u n d a r y - v a l u e p r o b lems. The c o n s t r u c t i o n on t h e s i n g u l a r w a l l o f a s i n g u l a r b r a n c h w i t h boundary and i n t e r i o r t r a n s i t i o n l a y e r s can be performed s i m p l y by a d d i n g boundary l a y e r s ( a c t u a l l y , "boundary s l i t s " ) t o (U:*' r e s p o n d i n g t o where t h e s l i t t h e b o t h ends ( t h a t the depths
,V:*'
J
t~h e s l i t
b
5 :.
There a r e t h r e e such branches, cor-
(c-l -
o r r i g h t end (
or a t
The e s s e n t i a l p o i n t i n o u r c o n s t r u c t i o n i s a b c _ l ) and ( c , ~
generalized F i f e condition (See, F i g . 4 . 2 )
- c : ~ ) are
determined by the
:
b
(4.3)
.
e x i s t s : a t t h e l e f t ( #,,),
See, Fig.4.4. L
)
b f ( s , v ) ds
Note t h a t t h e p a r t o f n o n l i n e a r i t y
=
0,
f
andJ
f ( s , v M ) ds
=
0.
Sa;l u s e d by t h i s s i n g u l a r s o l u t i o n i s t h e s o l i d
l i n e p l u s (one o r b o t h o f ) t h e d o u b l e s o l i d l i n e s i n F i g . 4 . 2 .
Fig.4.3.
The Singular Solutions with Boundaryand Interior-2'2 a n s i t i o n Layers.
I t is n o t e d t h a t t h e f o u r b r a n c h e s c o n s t r u c t e d i n t h i s way a r e d i f f e r e n t each
o t h e r when t h e y a r e measured by t h e a s y m p t o t i c norm norm. )
-
11 I[ .
(They have t h e same X
-
Hiroshi F U J I and I Yasumasa N I S H I U R A
30
Fig. 4.4. Of
The Dependency on Nonlinearities
Singular Branches.
To s t u d y t h e i n t e r r e l a t i o n of t h e s e b r a n c h e s , o n e may need t h e q u a n t i t i e s : G(rl*;v)dv.
E*(f,g) = Suppose E * ( f , g ) < 0 .
Then, a s 2 t e n d s t o r
t o zero, while t h e depth a t 5 i f E*(f,g) > 0.)
-1
;,
t h e d e p t h of t h e s l i t a t
remains bounded away from z e r o .
tends
(And, v i c e versa
Thus, t h e f o u r s i n g u l a r b r a n c h e s form two "wedges" on t h e s i n g u -
l a r wall a s i n F i g . 4 . 1 , s i n c e t h e a s y m p t o t i c norms o f t h e b r a n c h e s 3 and 9' t h e same v a l u e a t
U-
a;.
The same i s t r u e f o r t h e b r a n c h e s #$# and
lo
take
.
What happens when one deforms t h e n o n l i n e a r i t y ( f , g ) s o t h a t E * ( f , g ) changes smoothly ?
See, F i g . 4 . 4 .
The f o u r s i n g u l a r b r a n c h e s move smoothly, and when E * (
f , g ) = 0 , t h e t o p s o f t h e two wedges meet t o g e t h e r . E*(f,g) > 0 .
Then, t h e y s p l i t a g a i n f o r
Note t h a t an exchange o f b r a n c h e s o c c u r s i n t h i s p r o c e s s , s i n c e t h e
d e p t h o f t h e s l i t a t i l remains f i n i t e i n s t e a d o f 5
-1
f o r t h e case E*(f,g) > 0.
I t s h o u l d be n o t e d h e r e t h a t the wedges of singular branches on the ualZ are
traces of " h i t t i n g " and "spZitting" of Zimit points o f some branches o f t h e stationary probZem ( S P ) .
31
Global Bifurcation Diagram 85. -
Discussions - t h e Global View The purpose of d i s c u s s i o n s h e r e i s t o i n t e g r a t e t h e a n a l y t i c a l r e s u l t s i n 5 1
-
84 i n t o a u n i f i e d view t o t h e g l o b a l b i f u r c a t i o n s t r u c t u r e f o r o u r n o n l i n e a r
d i f f u s i o n systems.
One o f t h e main i n t e r e s t s i s t o s e e t h e mechanism of s u c c e s s -
i v e recovery and l o s i n g o f s t a b i l i t y observed i n primary branches of ( S P ) . (See,
L11.1 The l o c a l s t r u c t u r e of double s i n g u l a r i t i e s placed on t h e t r i v i a l s h e e t ( ( d l , d 2 ) , $)
E
2 R+
x
X
(§I), t h e g l o b a l s t r u c t u r e o n t h e shadow c e i l i n g ( § 2 ) , and t h e
somewhat complex s t r u c t u r e of s i n g u l a r branches on t h e s i n g u l a r w a l l (14) - they a r e all expected t o r e f l e c t t h e r e a l e x i s t i n g b i f u r c a t i o n s t r u c t u r e of t h e nonl i n e a r d i f f u s i o n system. The f i r s t key seems t o be t h e s t r u c t u r e o f c o n t i n u a a t t h e singular-shadow edge.
I n f a c t , an i n t e g r a t i o n of a l l t h e above r e s u l t s , t o g e t h e r with t h e numerica
evidences r e p o r t e d i n [I], may l e a d u s t o a working h y p o t h e s i s
on
the
edge
continua.
Fig. 5 . 1 Fig. 5.1 Extension o f t h e Edge Continurn; The l i n e - - - - - - - s b ~ s t h e r be c o v e v l i n e of D2,- and D which tend t o t h e Shadow Singular L i m i t s . The two SinguLar L i m i t P o i n t s o f the D s h e e t 2,+ appear here. 1
Two s i n g u l a r branches with boundary s l i t s a r e s a i d t o be terminal branches of D
n,+
(or D
n,-
) i f a t J = 0, they a r e connected
continuum which i n c l u d e s t h e l i m i t s t a t e D
terminal singular branches of DIZ,+,
-
n,+
by a (one-parametrized) (or D
n,-
).
Then,
fGr
edge
a pair o f
tUG
t h e r e may e x i s t a sh e e t o f s o l u t i o n s o f ( S P )
Hiroshi FUJIIand Yasurnasa N I S H I U R A
32
whi-12 connect the two terminal branches, and t o which i n t e r s e c t s t h e primary sheet transuersalZy.
13
n, f
See, Fig.5.1 (a) for the case of D2,-, and Fig.S.l (b) for
D2,+. Assuming this, the global picture of the Dl-sheet looks like Fig.5.2. The pot-like structure in Fig.l.4 which begins at Z1 on the D2 sheet extends, and as a becomes snmaller, the “loop” expands until it hits the singular wall at Y = a:, where
it
yields two singular limit points.
As3
< a;,
the loop splits into two
arcs, one is, of course, a cross-section of the primary D1-sheet, and the other is the branch connecting the two terminal singular states of D2, which have a boundary and interior transition layers.
As a
tends to z e r o ,
the latter arc shrinks to the
edge continuum of D 2 , while the former remains as the primary fi
shadow branches.
1,:
Fig. 5.2. The Global Picture of t h e D I p o t .
An important consequence of this picture is that the outer surface of this U1pot is the s t a b l e region of (P), while the inner surface corresponding to the boundary- and interior-layered solutions is the unstable region.
A
remark should
be made here. There remains a possibility that this stabZe region may have some isolated “unstable islands” encircled by a Hopf secondary bifurcation line. However, it is shown in [ 5 ] by an a p r i o r i estimate that such Hopf points, if exists, cannot exist for sufficiently small
3
> 0.
We note that such a global picture is supported by ilucrical computations in
33
Global Bifurcation Diagram [ l ] , and i n f a c t , t h i s has been e s s e n t i a l l y p r e d i c t e d t h e r e .
In [ l ] , we were
not aware of t h e n a t u r e of t h e i n n e r s u r f a c e of t h e p o t , s i n c e t h e boundary- and i n t e r i o r - l a y e r e d s o l u t i o n s and t h e e x i s t e n c e of s i n g u l a r l i m i t p o i n t were not d i s covered y e t . F i g . 5 . 3 shows t h e recovery of s t a b i l i t y of t h e D2-sheet.
T h i s p i c t u r e shows
t h e mechanism of a r e c o v e r y of s t a b i l i t y ; t h i s r e c o v e r y i s a c t u a l l y performed by a s e p a r a t i o n o f a sub-branch which has both boundary- and i n t e r i o r l a y e r s .
a = o
X”
F i g . 5.3.
The Singulur L i m i t Points of D I p -+,and t h e Recovery of D2,_+-branches. I t should be remarked t h a t , a s i s mentioned i n 5 1 ( s e e , a l s o [l]),
the
primary b i f u r c a t i n g D 2 - s h e e t l o s e s s t a b i l i t y on t h e way t o t h e s i n g u l a r wall d 1+ 0. One s e e s an o u t c r o p of t h e s t a b l e r e g i o n o f D2 between
r
i n Fig.l.5. 233 The above a n a l y s e s suggest t h a t t h e recovery l i n e of s t a b i l i t y of D Z , which s t a r t s
5,2J starts
e n t e r s i n t o t h e singular-shadow edge
r2,3,
e n t e r s i n t o t h e s i n g u l a r wall
J
192
and
= d l = 0 , while t h e l o s i n g l i n e which
dl = 0 a t Z a t e s t a t t h e s i n g u l a r l i m i t
34
Hiroshi FUJIIand Yasurnasa N I S H I U R A
p o i n t of D ~ namely, , at3
‘2 = 4 < .
As a r e s u l t , t h e t h e s t a b l e r e g i o n of t h e D 2 -
s h e e t occupies a band-shaped r e g i o n of t h e D2-pot. g e n e r a l t o t h e Dn-sheets (n
2 2).
S i m i l a r s t a t e m e n t s hold i n
See, Fig5.4 f o r t h e c a s e of t h e D2-sheet.
‘2
Fi9.5.4.
The Stable Region of D2-pot.
A s a c o n c l u s i o n , o u r s t u d y s u g g e s t s t h a t t h e r e a l organizing c e n t r e which
control t h e whole b i f u r c a t i o n s t r u c t u r e may l i e on t h e singular w a l l , and e s p e c i a l l y i n t h e singular-shadow edge. tion.
Further studies a r e necessary t o c l a r i f y the s i t u a -
Though t h e r e remains many q u e s t i o n s which a r e n o t answered, we b e l i e v e t h a t
our study may s e r v e a s a f i r s t s t e p
towards t h e g l o b a l b i f u r c a t i o n s t u d y of non-
l i n e a r d i f f u s i o n systems.
Acknowledgements We owe a s p e c i a l thank t o our c o l l e a g u e P r o f . Yuzo HOSONO f o r h i s d i s c u s s i o n . References [ l ] H . F u j i i , M.Mimura and Y.Nishiura, A P i c t u r e of t h e Global B i f u r c a t i o n Diagram i n Ecological I n t e r a c t i n g and D i f f u s i n g Systems, Physica D
Phenomena,
5,
-
Nonlinear
No.1, 1 - 4 2 (1982).
[ 2 ] H . F u j i i , Numerical P a t t e r n Formation and Group Theory, Computing Methods i n
Applied Sciences and Engineering, Eds. R.Glowinski and J . L . L i o n s - Proc. o f t h e Fourth I n t e r n a t i o n a l Symposium on Computing Methods i n Applied S c i e n c e s and Engineering, North-Holland, 63-81 (1980).
Global Bifurcation Diagram
35
[ 3 ] M.Mimura, Y.Nishiura and M.Yamaguti, Some Diffusive Prey and Predator Systems and Their Bifurcation Problems, Annals of the New York Academy of Sciences, 316, 490-510 (1979). [ 4 ] M.Mimura, M.Tabata and Y.Hosono, Multiple Solutions of Two-Point Boundary Value Problems of Neumann Type with a Small Parameter, SIAM J . Math. Anal. 11,
613-631 (1980).
[ 5 ] Y.Nishiura, Global Structure of Bifurcating Solutions of Some ReactionDiffusion Systems and their Stability Problem, Computing Methods i n Applied Sciences and Engineering, V , Eds. R.Glowinski and J.L.Lions, North-Holland, 185-204 (1982). [ 6 ] Y.Nishiura, Global Structure of Bifurcating Solutions of Some Reaction-
Diffusion Systems, SIAM J . Math. Anal.
,e, 555-593 (1982).
[ 7 ] A.M.Turing, The Chemical Basis of Morphogenesis, P h i l . Trans. Roy. S o c . , 8237, 37-72 (1952).
This Page Intentionally Left Blank
Lecture Notes in Num. Appl. Anal., 5 , 37-54( 1982) Noti/itieLir PDE in Applied Science. U.S.-Japrin Seminor, Tokyo, 1982
The Navier-Stokes l n i t i a l Value Problem i n
Lp
and R e l a t e d Problems
Yoshikazu Giga
''
Department o f Mathematics Faculty of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464 JAPAN
We discuss the existence of a strong solution of the nonstationary Navier-Stokes system in Lp spaces. Our results generalize Lz results of Kato and Fujita. To establish Lp theory we study the Stokes system and construct the resolvent of the Stokes operator.
I n t r o d u c t i o n and summary of r e s u l t s .
This is an introduction to the articles [3-71 which concern the Stokes and the Navier-Stokes equations. Let
D
(n 2 2 )
be a bounded domain in Rn
with smooth boundary
consider the Navier-Stokes initial value problem concerning velocity un)
and pressure p:
-au _ at
i;u + ju,grad)u
+
grad p
=
f
x
(O,T),
x
(O,T),
div u = 0
in
D
u
on
S x (O,T),
in
D
= 0
u(x,O) = a(x)
with given external force
in D
f and initial velocity a.
(u,grad)
=
n . C I? a x , j=l 1
37
.
Here
S. We
u = (u
1
,-*.,
38
Yoshikazu CIGA Many mathematicians, J. Leray, E. Hopf,... have studied the solvability o f
this problem; see Ladyzhenskaya [9 ] and Temam [14] and papers cited there. On the existence of a regular (in time) solution there is a celebrated work
established by Kato and Fujita [1,8]. Let us quickly review their theory. As is well known (see [ 9 ] ) the space (L2(D))"
admits the orthogonal Helmholtz decomposition
where Wm(D)
is the Sobolev space of order m
P be the orthogonal projection from
(L2(D))"
form (I) to the evolution equation in
where Fu
=
-P(u,grad)u.
operator in X2
such that W (D) = L (D). onto
X2.
Let
Using P, we can trans-
x2
Here the operator A = A
2
=
-PA is called t h e Stokes
with the domain
D(A) = l u
F o r simplicity we assume
E
2 W2(D);
u = 0 on S } n
X2.
Pf = 0. Applying semigroup theory, Kato and Fujita
have proved the existence o f a unique global strong solution of (11) f o r every a
E
X2
when the space dimension n
is two. While, when n
= 3,
proved the existence of a unique local strong solution of (11) f o r where 'A
denotes the fractional power of A.
they have a
E
D(A1'4),
39
Navier-Stokes Initial Value Problem in Lp Our aim is to show the existence o f a unique strong solution without
assuming that the initial velocity a theory
(1 < p
L
P
theory also answers
to his problem.
To develop o u r theory the crucial step i s to derive the following two properties of the Stokes operator A . here P’ X 2 and A2, respectively.
Theorem 1 (131). X
P’
The operator
-A
P
X
P
and
A
P
are
I, -analogues of
P
generates a bounded a n a l y t i c semigroup i n
Moreover, t h e estimate
i s v a l i d w i t h constant Theorem 2 ( [ 4 ] ) .
The space
[Xp,D(Ap)Ja, where Remark.
When
p
C , where
=
O(A‘)
ilfll
f in
X
P
.
i s t h e complex i n t e r p o l a t i o n space
P
0 _ 0, p+6 >
-.21
the above estimate i s v a l i d f o r
p = n
1 6 = -4,
We now consider (11) in
X
P
e = 4' L
.
p =
1 -. 2
lhe existence result follows from Theorem 1
and Lemma 1. Our method to prove is similar to that of Kato and Fujita. Theorem 3 ([S]).
Fix
n/2p - 1/2 -5
such t h a t
y
(i)
For some
[o,T)
to
D(A~),
i s continuous from
(0,T)
to
D(Aa)
IIAau(t)ll
=
1. Assume t h a t
a
E
> 0,
u i s continuous from
(ii) u
Moreover, u
T
- 0.
+
11
, where
11 fll
denotes the norm of f in Xn.
Theorem 1 implies that
This yields the estimate /IACluo(t)ll with
2
KaO t-a, a 1 0
49
Navier-Stokes Initial Value Problem in L'
We consider the following problem:
by
i s small enough, i s i t p o s s i b l e t o e st i m a t e //Aaum(t)11 If KaO liam t-a from above w i t h constant Kam =< K < m such t h a t K i s independent
of
m ?
Theanswer is y e s and we will give a proof; see [ 1 , 5 , 8 ] . some m 1 0, um(t)
satisfies /IAaum(t)I/
Lemma 1 with
Suppose that for
6 = 1/4,
@ =
1/4,
5
Kam t-'
p
= 1/2
for all
a _>- 0.
implies
We thus have
with
Ka,m+l where
2
KaO
+
Ca+&M B(1-6-a,6) K
@m
is the beta function. This implies that
B(a,b)
for each m
=
0 as a element of C ( [ O , T ] ,
0 5- a < 3/4 and that
Put km = max{K
Om'
K
pm
u,(t)
Xn) n C ( ( O , T ] ,
K
pm'
u,(t) D(Aa))
satisfies
1 and note the definition of K am to get
is well-defined for all
a,
50
Yoshikazu CICA
where C
is a constant depending only on A.
An elementary calculation shows
that if k
(C)
< -
1
4c ’
then for each m 2- 1 the estimates
< K Ka,m+l = a0
are valid for constant K.
+
‘a+6
M B(1-6-a,6) K 2
2
Ka,
We thus have
/IAa~m+l(t)ll
2
Ka t-a,
0 _< a
01
t h e o p e r a t o r - n o r m of
X
1 \,I 1 ' )
l o g s ~ { l x l / l x / ' , l x l l / l x I } . A E G(X,l,B)
d e f i n e d by
IAly,X
dist(
to
(X,Y,A,f).
w i l l be c a l l e d t h e parameters of t h e system
REMARK 2 . 1 .
R+
a r e monotone i n c r e a s i n g f u n c t i o n s on
p,,
\wlYv
r =
(vIy
.
a
(We w r i t e
vb
f o r sup{a,b} . )
In some
p r o b l e m s , however, (Nl) h o l d s w i t h
xl(
s t r e n g t h e n i n g some of t h e r e s u l t s .
S i m i l a r remarks apply t o o t h e r p a r a m e t e r s .
A sequence
DEFINITION 2 . 2 tions) t o
(Q) on
{u }
/wly)
r e p l a c e d by
A,(
i s c a l l e d a null s e q u e n c e
[O,T] i f t h e
un
a r e bounded i n
lwlx)
(Of
C([O,T];Y
, thereby
approximate solu-
n Lip,([O,T];X)
and d u n / d t + A(un)un
(2.1) Here
u
E Lip*([O,T];X)
function
u E Lm([O,T];X)
EC([O,T];X) solutions
-
f(un) -+ 0
means t h a t
so t h a t
by v i r t u e of (A2) and
u
in
i s a n i n d e f i n i t e Bochner i n t e g r a l of a
u
du / d t = u
(A3).
w i l l be m o s t l y p i e c e w i s e
Lm( [O,T];X)
.
Note t h a t
A(un)un
[In t h e e x i s t e n c e p r o o f , a p p r o x i m a t e
C1([O,T];X) and n o m e a s u r e t h e o r y w i l l
be required. ]
DEFINITION 2 . 3 . p a r t i t i o n of
u
[O,T]
closed subinterval
E
C([O,T];X)
i s c a l l e d a weak s o l u t i o n t o (Q) i f t h e r e i s a
i n t o a f i n i t e number of s u b i n t e r v a l s s u c h t h a t on e a c h
I, u
is the l i m i t i n
C(1;X) o f a n u l l s e q u e n c e .
[Hence
Quasi-linear Equations of Evolution u
.I
E Lip( [O,Tl;X)
DEFINITION 2 . 4
el (B
and
X
Y
Let
(I))
REMARK '2.5
By(')
Y
he t h e b a l l i n
X
i t s closure i n
.
Yo
As is easily seen,
r > 0
d e f i n e d as t h e infimum of
Yo
We denote by
x
such t h a t
t h e union of
includ 0,
and r a d i u s
i s a Banach space w i t h t h e norm
Y c Yo c X , w i t h t h e i n c l u s i o n s c o n t i n u o u s .
X = C[O,l],
with c e n t e r
Yo w i l l b e c a l l e d t h e l o c a l c l o s u r e of Y
r > 0.
for a l l
65
For example, l e t
i s a c l o s e d suhspace of
YO. THEOREM I .
Given
H E Yo
,
T z 0 , depending o n l y on
t h e r e is
u
(and t h e parameters o f t h e s y s t e m ) , and a unique weak s o l u t i o n
10lyo (Q)
(existence)
on
[O,T]
s u b s e t of C ( [O,T];X)
H .
The map
O
H u
i s bounded on a bounded
B ( [O,T];Yo), and i s continuous from t h e X-topology t o
to
Yo
u(0) =
with
to
w i t h i n a bounded s e t of
bounded f u n c t i o n s on
to
I
Yo.
[Here
B(I;Yo)
denotes t h e s e t o f
Yo. We cannot r e p l a c e it with
Lm(I;Yo) s i n c e t h e
f u n c t i o n s considered may n o t be s t r o n g l y measurable. 1
R W K 2.6
A f t e r i n t r o d u c i n g t h e space
w
t o all
I--$
of
A(w)
Y C X.
w
E
Yo,
one might t r y t o extend t h e map
Yo, t o he a b l e t o work i n t h e space p a i r
There a r e two d i f f i c u l t i e s i n t h i s a t t e m p t .
g e n e r a l method t o extend
A
A(w)
instead
F i r s t , t h e r e i s no
i n t h i s manner s o a s t o make
Second, even if t h i s i s p o s s i b l e ,
X
Y°C
A ( w ) E B(YO,X).
may n o t become a g e n e r a t o r i n
Yo = L i p
may be expected from t h e t y p i c a l example (HS) i n which
Yo.
This
(see section 5).
In f a c t t h e r e a r e no r e a s o n a b l e C 0-semigroups on t h e s p a c e Lip. REMARK 2 . 7 .
If
Y
i s r e f l e x i v e , we have
Theorem I helongs t o i s a solution t o
s o l u t i o n t o (Q).
Cw([O,T];Y), where
(Q) with
Yo = Y Cw
and t h e s o l u t i o n
u
in
i n d i c a t e s weak c o n t i n u i t y , and
d u / d t E Cw([O,T];X).
Thus
u
u
i s almost a s t r o n g
I n f a v o r a b l e c a s e s one may be a b l e t o show t h a t
u E C([O,T];Y)
66
Toshio KATO
( s t r o n g s o l u t i o n ) by a u x i l i a r y c o n s i d e r a t i o n s s u c h a s t h o s e g i v e n i n [8;Remark
5.31 3. S k e t c h o f t h e p r o o f o f Theorem I For s i m p l i c i t y we assume
f = 0.
[7,9,10],we u s e s u c c e s s i v e a p p r o x i m a t i o n b a s e d on t h e
A s i n p r e v i o u s works
[81.
theory of l i n e a r evolution equations given i n ( a ) F i r s t we assume t h a t
0 G Y , and f i n d a b a l l i n
Y
expect t o confine t h e v a l u e s of t h e approximate s o l u t i o n s val
[G,T].
.
R > IB/,
To t h i s e n d , f i x a n
i n which we can u
f o r a fixed inter-
R', R"
Then w e c a n d e t e r m i n e
such t h a t
R' = R e x p [ X 2 ( R ) ]
I n d e e d , i n view o f (N3) it s u f f i c e s t o s e t [A2(ri)]
.
A l l approximate s o l u t i o n s
below w i l l t a k e v a l u e s in i n a l l t h e parameters
REhIARK 3.1. R ,
R', R"
B
Y
Al(r), and
u
and
and r e l a t e d f u n c t i o n s we i n t r o d u c e
(R"), s o t h a t we s h a l l b e a b l e t o s e t
o n l y on
I,, T ( i n t r o d u c e d b e l o w ) a y e d e t e r m i n e d by
(3.2) where
/@Iy
0 b u t n o t n e c e s s a r i l y on
( b ) Let
E
T
and
For e a c h
L
v(t) E B
(R'),
ys
v E C([O,T];Y)
/v(t)-v(s)/,
v E E, l e t
v
depended
5
such t h a t
Llt-sl,
be a step-function approximation for
?
a r e a s u b s e t of t h e v a l u e s of
f o l l o w s from ( 3 . 2 ) and (N2), ( N h ) , ( A l ) t h a t
AV(t) = A(v(t))
form s t a b l e f a m i l i e s of g e n e r a t o r s i n
w i t h uniform s t a b i l i t y c o n s t a n t s . d
{Uv(t,s)}
T
a r e constants t o b e determined.
it i s i m p l i e d t h a t t h e v a l u e s o f
A(?(t))
I0Iy
only.
be t h e s e t of a l l functions
v ( 0 ) = M,
r = R"
...,p h ( r ) .
T h i s i s a g r e a t a d v a n t a g e o v e r t h e s i t u a t i o n i n "7,101, where
only.
R" = R ' e x p
associated with
7
X
v ( b y which v ).
It
and A v ( t ) =
as w e l l as i n
Y (see
[8]),
T h e r e f o r e , t h e r e i s an e v o l u t i o n o p e r a t o r
{A ( t ) ] ( s e e [8]; h e r e we may d i s r e g a r d f i n i t e l y many
67
Quasi-linear Equations of Evolution
-
IJV(t,s) ) .
d i s c o n t i n u i t i e s f o r t h e derivatives of
I t f o l l o w s from t h e u n i f o r m e s t i m a t e s f o r t h e s t a b i l i t y c o n s t a n t s t h a t
-
4
u :U v ( . ,010E E
L
if
and
T
any s t e p f u n c t i o n a p p r o x i m a t i o n
3 of
v.
T
V
Moreover, t h e map
and
u E O?
can
Lm( [O,T];X), by r e d u c i n g t h e s i z e
be shown t o b e a c o n t r a c t i o n i n t h e m e t r i c o f
of
v E E
a r e chosen a p p r o p r i a t e l y , f o r any
i f necessary. ( c ) We can now c o n s t r u c t a n u l l s e q u e n c e
un(0) = 0'. Assuming t h a t
u
Sin
function approximation
to
Q
L ([O,T];X)-norm.
to
(4)on
[O,T]
such t h a t
h a s been c o n s t r u c t e d , we c h o o s e a s t e p
E
u
such t h a t
m
denotes t h e
{un}
~ =+ OCn~
u
Then
l[ 0
with
are in
6. J
A
C([O,T];X).
a r e bounded i n
we may C1+p+o
shows t h a t
Sinre the
u. a r e bounded i n J
B([O,T];Y)
(because
h
the
(For
i s s y s t e m a t i c a l l y used. )
Moreover, we s h a l l show t h a t t h e dependence
To t h i s end l e t
u
by
s u f f i c i e n t l y s m a l l , a l t h o u g h t h e p r o o f i s by no means t r i v i a l .
E
( c ) Thus we have shown t h a t (HS) h a s a u n i q u e s t r o n g s o l u t i o n
J
p.
T h i s c a n h e done s i m u l t a n e o u s l y f o r
d e t a i l s c f . Nakata [13], where norm-compression
a.
-1
h
(X,Y,A)
i n t h e system
E
Iu[[pl i n ( 5 . 9 )
s u f f i c i e n t l y s m a l l , t h e a s s o c i a t e d seminorm
E
becomes s m a l l so t h a t we h a v e
,.
Indeed, t h e r e i s nothing
Y ) , it f o l l o w s t h a t
u. + u J
in
C( [@,T];Y).
74
Toshio KATO
6.
An example of compressible system Let us i l l u s t r a t e t h e n o t i o n o f compressible systems by a simple example.
EXAMPLE
6.1.
Consider t h e f i r s t - o r d e r s c a l a r equation
(6.1)
u
t
+uu
= 0 ,
x
t >- O .
x E R ,
choose X = X = H (R),
(6.2)
A
.
It i s known ( s e e [ 9 ] ) t h a t A
YA = H 3( R ) ,
Y = H2 ( R ) , (X,Y,A)
.
We s h a l l show t h a t
i s a "good" system.
h
A
(X,Y,A)
i s compressible t o
(X,Y,A).
A
parameters we have t o c o n s i d e r a r e A
B2,E
A
l(A(w)+A)ulE,;
, which
= cr
so t h a t
'
Y
_> (A -
c[wlE,~)luls,;
i s independent o f
E
.
A
, and
A3,E
p
A
.
B
1,E
3,E
.
Among them,
( r ) 2 B,(r)
, etc.
Hence w e can t a k e A
This shows t h a t
h
(X,Y,A)
is
It i s i n s t r u c t i v e t o s e e what happens i f i n t h e above example we
REMARK 6 . 2 .
IuI2E,Y
B2,E
Thus t h e only
(X,Y ,A).
compressible t o
replace
'
may choose t h e norms
, etc.
AW
i s n o n t r i v i a l , s i n c e it i s e a s y t o see t h a t
It follows t h a t
B2,€(r)
Ix
[
A
B1,E
, we
X = X
Since
I n t h i s problem we do not need v a r i a b l e norms
only
A ( w ) = Wdx
H1(R)
by
2 = luly
B2,€
+
2
E
luxxl
and 2
.
; by
H 2 ( R ) , with
In t h i s case
could not s t a y bounded as
(X,Y,A) E
-0.
2
luly = IuI2
3 + IuXI-
and
i s not a "good" system, Indeed, t h e b e s t e s t i m a t e one
Quasi-linear Equations of Evolution can e x p e c t of t h e s o r t o f
(6.4) w i l l
be
I ( A ( ~ ) u , u ) ~ , 2y /c l w x x l ( l u l
5 A
This gives
62,E(r)=
CE
-1 r
2
7 lux/-
+
-1 CE
2,
blows up as
+
E
2
Iuxx/2)
.
IWIE,;l~lE,y
, which
75
E
-0.
Footnotes 1.
T h i s work was p a r t i a l l y s u p p o r t e d by NSF G r a n t MCS 79-02578.
References [l] C e s a r i , L . , A boundary v a l u e p r o b l e m f o r q u a s i l i n e a r h y p e r b o l i c s y s t e m s i n t h e S c h a u d e r c a n o n i c form, Ann. S c u o l a Norm. Sup. P i s a [2]
C i n q u i n i C i b r a r i o , M.
( 4 ) 1 ( 1 9 7 4 ) , 311-358.
and C i n q u i n i , S . , E q u a z i o n i a d e r i v a t e p a r z i a l i d i
t i p o i p e r b o l i c o ( E d i z i o n i Cremonese, R o m a
1964).
[31 C i n q u i n i C i b r a r i o , M., U l t e r i o r i r e s u l t a t i p e r s y s t e m i d i e q u a z i o n i q u a s i l i n e a r i a d e r i v a t e p a r z i a l i i n p i u v a r i a b i l i i n d e p e n d e n t i , 1 s t . Lombard0 Accad. S c i . L e t t . Rend. A 103 (1969), 373-407.
[4]
Douglis, A . ,
Some e x i s t e n c e t h e o r e m s f o r h y p e r b o l i c s y s t e m s o f p a r t i a l
d i f f e r e n t i a l e q u a t i o n s i n two i n d e p e n d e n t v a r i a b l e s , Corn. P u r e Appl. Math.
5 ( 1 9 5 2 ) , 119-154.
[5]
F r i e d r i c h s , K . O., N o n l i n e a r h y p e r b o l i c d i f f e r e n t i a l e q u a t i o n s o f two i n d e p e n d e n t v a r i a b l e s , Amer. J . Math. 70 ( 1 9 4 8 ) , 555-589.
[6]
Hartman, ?. and W i n t n e r , A . , i o n s , h e r . J . Math.
[7]
Hughes, T . 3 . R . ,
74
On t h e h y p e r b o l i c p a r t i a l d i f f e r e n t i a l e q u a t -
(1952),
834-864.
K a t o , T . , a n d Marsden, J. R . ,
Well-posed q u a s i - l i n e a r
second-order h y p e r b o lic systems w i t h a p p l i c a t i o n s t o n o n l i n e a r elastodynamics a n d g e n e r a l r e l a t i v i t y , Arch. R a t i o n a l Mech. A n a l . 63 ( 1 9 7 7 ) , 273-294.
76 [8]
Toshio KATO Kato,
T., L i n e a r e v o l u t i o n e q u a t i o n s o f " h y p e r b o l i c " t y p e , J. F a c . S c i . Univ.
Tokyo, S e c . I , 1 7
(197O), 241-258.
[ 9 ] K a t o , T., Q u a s i - l i n e a r e q u a t i o n s of e v o l u t i o n , w i t h a p p l i c a t i o n s t o p a r t i a l d i f f e r e n t i a l e q u a t i o n s , S p e c t r a l Theory and D i f f e r e n t i a l E q u a t i o n s , L e c t u r e Notes i n Math.,
448 ( S p r i n g e r 1975, p p . 25-70).
[lo] K a t o , T . , L i n e a r and q u a s i - l i n e a r e q u a t i o n s o f e v o l u t i o n o f h y p e r b o l i c t y p e , C. I . M . E . , I1 C I C L O ,
1976, H y p e r b o l i c i t y , p p . 125-191.
[Ill Kato, T . , The Cauchy p r o b l e m f o r t h e Korteweg-de V r i e s e q u a t i o n , N o n l i n e a r p a r t i a l d i f f e r e n t i a l e q u a t i o n s a n d t h e i r a p p l i c a t i o n s , i n : B r & z i s , H . and L i o n s J . L . ( e d s . ) , C o l l e g e de F r a n c e Seminar. VOL.
I
( P i t m a n 1 9 8 0 , p p . 293-
307). [12] K a t o , T . , On t h e Cauchy problem f o r t h e ( g e n e r a l i z e d ) Korteweg-de V r i e s e q u a t i o n , Advances i n Mathematics S u p p l e m e n t a r y S t u d i e s (Academic P r e s s ,
t o appear).
[13] Nakata, M . , Q u a s i - l i n e a r e v o l u t i o n e q u a t i o n i n n o n r e f l e x i v e Banach s p a c e s , with a p p l i c a t i o n s t o hyperbolic systems, D i s s e r t a t i o n , University of C a l i f o r n i a , Berkeley, 1983.
[ 1 4 ] S c h a u d e r , < J . , C a u c h y ' s c h e s Problem f c r p a r t i e l l e D i f f e r e n t i a l g l e i c h u n g e n e r s t e r Ordnung.
Anwendurigen e i n i g e r s i c h a u f d i e a b s o l u t b e t r z g e d e r Ldsungen
b e z i e h e n d e n Abschxtzungen, Commentarii Math. H e l v . 9 ( 1 9 3 7 ) , 263-283.
Lecture Notes in Num. Appl. Anal., 5, 77-100 (1982) Nonlinear PDE in Applied Science. U.S.-Japan Seminar, Tokyo, 1982
Asymptotic Behaviors of the S o l u t i o n
of an E l l i p t i c Equation w i t h Penalty Terms
Hideo Kawarada* and Takao Hanada**
* Department of Applied Physics, Faculty of Engineering, University of Tokyo Bunkyo-ku, Tokyo 113, JAPAN ** Department of Information Mathematics, The University of Electro-Communications 1-5-1, Chofugaoka, Chofu-shi, Tokyo 182, JAPAN 1.
Introduction Let 0
2
satisfy (i)
be connected domain in R with smooth boundary .'I
C22Eo;
(ii) R l = C 2 - Q o
is a connected domain; (iK) the measure of
an is positive or a1 is unbounded; (iv) aC2 is smooth
an:l)r\
so as to
Take
(see
F1g.l).
We shall consider the boundary value problem defined in R for every E > O and a,B ER.
Find $' =
(1.3)
in Q0,
such that
on I'
n
77
Hideo KAWARADA and Takao HANADA
$14
and
+
R
(1x1 = x + x + - ) ,
Here n i s t h e outw,ird n o r m a l on
r
t o $and lo ho i s a p o s i t i v e c o n s t a n t .
I t is
fo u n d i n L i o n s ( [ 3 ] , C h a p t e r 1, p.80)
t h a t t h e b o u n d a r y c o n d i t i o n w hic h t h e l i m i t
f u n c t i o n of
i s c l a s s i f i e d i n t o t h r e e t y p e s , which
as E+O
s a t i s f i e s on
depend upon t h e r e l a t i v e v a l u e o f a and 0. I n t h i s p a p e r , we s t u d y a n a s y m p t o t i c b e h a v i o r o f $I' enough.
We now summarize t h e c o n t e n t s of t h i s p a p e r .
Theorems.
on
r
when
E
i s small
Section 2 includes four
I n s e c t i o n 3 , w e p r e p a r e some Lemmas f o r t h e p r o o f s o f Theorems.
S e c t i o n s from 4 t o 7 a r e d e v o t e d t o t h e p r o o f s of Theor'ems.
2.
Theorems
2.1
We p u t
Then ( 1 . 1 ) - ( 1 . 5 )
are r e f o r m u l a t e d as follows:
Find QEC K
such t h a t
=
1
fvdx
,
'v C K.
OO
T h e r e e x i s t s a u n i q u e s o l u t i o n Q E (K t ) of ( 2 . 2 ) v = q E i n (2.2),
(2.3)
w e see t h a t
f o r 'f
i s u n i f o r m l y bounded in
E:
CH-'(O0).
Putting
79
Asymptotic Behaviors of the Solutions where C d e p e n d s upon o n l y t h e d a t a f . When E t e n d s t o z e r o , w e c a n e x t r a c t a s e q u e n c e
E
( n = l , 2,
...)
such t h a t
1
weakly i n H (0 ) .
(2.4)
Then
1 0 0
L e t v C H (Q ) and i n (2.2)
b e t h e z e r o e x t e n s i o n of v t o R .
1
(R) y i e l d s
f o r :t.H
(2.6)
from which, w e have
- A Q 00
(2.7)
m-1
I f we assume f t H
+
h
0 0
(a,)
= f
(mLO),
i n H-’(.Q~).
t h e n we h a v e
By t h e t r a c e t h e o r e m (NeFas [ 5 1 ) ,
Moreover, Q0 s a t i s f i e s on
Theorem (a)
d3) Suppose
If 6 >
(2.10)
101,
then
r: m- 1
f tH
(Q,) (m,O).
Passing t o the l i m i t
Hideo KAWARADA and Takao HANADA
80 (b)
I f 6 = a >0 , t h e n
(c)
I f B < a and a > 0, t h e n
= o
(2 .1 2 )
Remark 1
There a l s o h o l d s $
in
1 m-2 H (r).
= O i n t h e case a + 6'0
a nd a < 0 u n d e r t h e same
ass ump t i o n .
2.2
We now s t a t e o u r mai n r e s u l t as f o l l o w s .
Theorem 2 (a)
S u p p o se f E H m ( Q ) (m,O) 0
and l e t
b e small enough.
E
I f 5 > la\, t h e n
where JI0 s a t i s f i e s (2.10).
(b)
I f 5 = a > 0, t h e n
6,0
where
(c)
s a t i s f i e s (2.11).
I f 161 < a , t h e n
1 m+(2.15)
where
in
$o0 s a t i s f i e s ( 2 . 1 2 ) .
H
2
(r)
Asymptotic Behaviors of the Solutions 2.3
By u s i n g ( a ) of Theorem 2 , w e h a v e t h e r e g u l a r i t y r e s u l t s a b o u t
Theorem 3
k
Suppose f & H
(no) ( k 1 5 ) a n d l e t
E
81
Ji'.
b e s m a l l enough.
I f 8 > / a / , then
2.4
The m o t i v a t i o n of t h i s p a p e r c o n s i s t s i n t h e i n t e g r a t e d p e n a l t y m e t h o d
p r e s e n t e d by o n e o f t h e a u t h o r [2]. The m a t h e m a t i c a l j u s t i f i c a t i o n of t h i s method was d o n e i n t h e s e n s e o f d i s t r i b u t i o n . prove t h e key-point Theorem 4
I f w e u s e ( a ) o f Theorem 2 , w e c a n
o f t h i s method i n t h e framework o f t h e S o b o r e v s p a c e .
Suppose f t H
m
(a0 ) ( m L O )
and l e t
E
I f @ > la/,t h e n
Here s s t a n d s f o r t h e l e n g t h of t h e a r c a l o n g
r.
b e s m a l l enough.
82
Hideo KAWARADAand Takao HANADA Preliminaries
3.
The a i m o f t h i s s e c t i o n i s t o g i v e some p r e p a r a t o r y lemmas w h i c h w i l l b e n e e d e d i n t h e p r o o f s of Theorems. 3.1
We f i r s t i n t r o d u c e some o p e r a t o r s d e f i n e d b e t w e e n t r a c e s on
(i)
D e f i n e t h e mapping
$a i s t h e s o l u t i o n o f t h e p r o b l e m ;
(3.2)
-A$
where f 6 H
(ii)
$:
m-1
(no)
+ A
(iii)
no
(m2O).
D e f i n e t h e mapping
i s t h e s o l u t i o n of (3.2)
(3.5)
in
$ = f
2+
( E ~ - ~
w i t h f z 0 and t h e boundary c o n d i t i o n
6)
Ir
= b.
D e f i n e t h e mapping
(3.6)
$:
i s t h e s o l u t i o n o f t h e problem;
(3.7)
- - E
a+B
.A $ + $ = O
in
ill
r.
83
Asymptotic Behaviors of the Solutions
$Ian
(3.9)
= 0
and
JI * 0
(1x1
+
-).
1 m +W e d e n o t e T,:
and RE by t h e r e s t r i c t i o n of T f , SE and R" t o H m
S:
'(r).
But we
abbreviate the s u f f i x m hereafter,
3.2
1 m +-j Lemma 1
T (a) f
(3.10)
where To i m p l i e s T L e t JI
Proof --
T (b) = T ( a - b ) f 0
( Y = a , b ) b e t h e s o l u t i o n o f ( 3 . 2 ) u n d e r t h e boundary c o n d i t i o n
Y
-Jib.
-
Then
f=O'
$Ir
(3.11) Put Y = $
(r).
L e t a , b be a r b i t r a r y i n H
= Y.
I satisfies
(3.12)
-AY
(3.13)
Ylr
+ A = a
0Y = 3
-
in
no,
b.
Then
2 1
(3.14)
an
= To(a-b)
r
On t h e o t h e r h a n d ,
(3.15)
From ( 3 . 1 4 ) and ( 3 . 1 5 ) f o l l o w s (3.10).
Here w e s h o u l d n o t e t h a t To i s
I
l i n e a r and Tf is n o n - l i n e a r .
Lemma 2
1 m+-
1 T
and S f l
a r e homeomorphic from :-'(F)
m--
m+T H
(r)
to H
1 '(r)
f o r a n y m,O.
to H
'(r)
and R
i s homeomorphic from
84
Hideo K A W A K A Dand A Takao HANADA
Proof -
m+-
1'
T
i s i n j e c t i v e from H
f
-
T (a) f
=
2(r)
m-into H
1
2(r).
In f a c t , l e t a , b C H
m+- 1 2
(r)
Then, by (3.10)
Suppose T ( a ) = T f ( b ) . f
(a\ b).
1
T (b) = T ( a - b ) k 0 f 0
b e c a u s e of t h e s t r o n g maximum p r i n c i p l e u n d e r t h e a s s u m p t i o n h
0.
This is
a contradiction.
2"
T
i s s u r j e c t i v e from H f 1
m + 1T (r)
1
onto
c-'(r).
I n f a c t , w e c h o o s e any
m+-
bt H
'(r).
Then, t h e f o l l o w i n g p r o b l e m :
-a*
(3.16)
+
*
h
= f
no
in
(3.17)
has a unique s o l u t i o n @
m+-
E H
(3.18)
3"
b
Hm+'(O
) if h
> 0, w h i c h s a t i s f i e s
1 2(1')
I t is c h e c k e d t h a t T f and ( T f )
(see
and
-1
b = Tf(Jlblr).
m+are c o n t i n u o u s between H
1
1
2(r)
a n d)T('-;
[ll). m+-1
4"
Summing up l o , 2" a n d 3 " , w e see t h a t T f i s a homeomorphism f r o m H
2
(r)
1 onto
E
;-'(r).
The r e p e a t e d u s e of t h e a b o v e a r g u m e n t s g i v e s t h a t ( R )
1 m+SE are a l s o homeomorphic b e t w e e n H
3.3
2(r)
m-and H
-1
and
1 2
I
(r).
Here w e g i v e t h e e s t i m a t e s o f t h e norm of RE a n d SE, w h i c h are c r u c i a l f o r
t h e p r o o f of Theorems 1 a n d 2 . Lemma 3
Let
E
b e s m a l l enough a n d s u p p o s e B l a a n d m 2 0 .
Then
Asymptotic Behaviors of the Solutions
and
85
1
Proof
U si n g G r e e n ’ s f o r m u l a i n t h e probl em d e f i n i n g R E , we h a v e
From (3.2 2 ) i t f o l l o w s
and
(3 .2 4 )
Usi n g t h e s t a n d a r d t e c h n i q u e t o raise up t h e r e g u l a r i t y p r o p e r t y of t h e s o l u t i o n o f p a r t i a l d i f f e r e n t i a l e q u a t i o n s , w e o b t a i n (3. 19) and ( 3 . 2 0 ) . m+-1 2 R e w r i t i n g ( 3 . 5 ) w i t h an a i d o f To a n d R E , w e ha ve f o r V a E H (r)
86
Hideo K A W A R A D A and Takao H A N A D A
1
m+2(r) Here we have used t h e continuity of To from H
Lemma 4
(b)
If
Let
a + @>
E
1
to
g-'(r).
I
be small enough and m,O.
0, then
'bCH Proof -
We prove this lemma in the two cases.
2 special case R = R = (x,,x,) 1 c
10 < xl,
-- < x2 < + -1
1 m+2
In the first case, we prove the
(a
2
= R ) by using the fourier -
transformation. Subsequently, we give the plan of the proof in the general geometry
1" Let
and
.
(r).
Asymptotic Behaviors of the Solutions Here I)~(x,,x,)
i s t h e s o l u t i o n of t h e problem (3.7)-(3.9).
Solving (3.30) and (3.31), we have
From (3.32)
From (3.34), i t follows
87 4 Then JI s a t i s f i e s
Hideo K A W A R A D and A Takao HANADA
88
Hence w e o b t a i n
R e p e a t i n g t h e s i m u l a r a r g u m e n t s as a b o v e , w e c o n c l u d e ( 3 . 2 7 ) - ( 3 . 2 9 )
The domain R1 i s a r e g u l a r s i m p l y
2" L e t u s now d e a l w i t h t h e g e n e r a l c a s e .
c o n n e c t e d domain; t h e n t h e r e e x i s t s a ( f i x e d ) r e g u l a r c o n f o r m a l mapping
w = f ( z ) = u + i u 2 ( z = x + i x ) which maps R1 i n t o R t . 1 1 2
r
i s mapped i n t o t h e u - a x i s of w-plane.
2
yE = *€(f-l(w))
A s a matter of f a c t ,
Then t h e t r a n s f o r m e d s o l u t i o n
satisfies
(3.37)
By means o f t h e i t e r a t i v e method p r o p o s e d i n t h e t h e o r y of s i n g u l a r p e r t u r b a t i o n ( s e e [ 3 ] ) , Y E is a s y m p t o t i c a l l y d e v e l o p e d i n t h e f o l l o w i n g way:
Using ( 3 . 3 9 ) , w e o b t a i n (3.26)-(3.29)
3.4
(see the appendix).
Define
Then w e h a v e
Lemma 5
Let
E
-to
( n = l , 2,
... ) .
Then
I
Asymptotic Behaviors of the Solutions
89
1 (3.42)
y E n -t
yo
weakly i n H
E
(3.43)
Tf(9 n,
(r),
--1
-t
2
weakly i n H
Tf(Y )
2
(r). I -
Proof
Recalling (2.4),
Then, we d e n o t e by $ (3.44)
-A$
Y
(y = a , b )
+ XoJ'
Let a , b be a r b i t r a r y i n B
2
(r).
t h e s o l u t i o n of t h e problem: in
= 0
$1,
(3.45)
(3.42) i s obvious.
iZ
0'
= Y.
By u s i n g G r e e n ' s f o r m u l a , w e have
(3.46)
($bA$a-$aA$b)dx
Using ( 3 . 1 0 ) and t a k i n g a=;"-$P0
=
0.
i n (3.46),
I Suppose u = a + 8 + p ( a - 8 ) > 0 ( p t R)
Lemma 6
+
n(P-1) ( a - 8 )
(3.48)
.
Then
E E ( ~ - ~ ) *-t G0 ~
--I strongly i n H Proof -
By u s i n g t h e d e f i n i t i o n of T f and SE, Tf(yE) =
(3.49)
E 2a -
SE
(r)
as
E
( 1 . 4 ) i s r e w r i t t e n as f o l l o w s :
(YE).
E
Taking a = y
n
and
E = E
n
-to.
i n ( 3 . 2 6 ) f o r m = O and s u b s t i t u t i n g ( 3 . 4 9 ) ,
w e have
90
Hideo KAWARADA and Takao HANADA
I
Let E ~ + O . Then w e c o n c l u d e ( 3 . 4 8 ) w i t h a n a i d o f ( 2 . 3 ) .
4.
Proof o f Theorem 1 L e t p = 0 and 8 > / a / i n t h e a s s u m p t i o n of Lemma 6 .
(a)
Then
= a + B > 0 and
( 3 . 4 8 ) becomes
By ( 3 . 4 2 ) and ( 3 . 4 3 1 ,
(4.2)
(b)
L e t a = B > 0.
Then
0 =
2a > 0 and ( 3 . 4 8 ) becomes
(4.3) which i m p l i e s
(4.4)
by t h e d e f i n i t i o n of T f and
(c)
90 .
Let p =I, a > 6 a n d a > 0.
T h e n u = Z a > 0 a n d ( 3 . 4 8 ) becomes
(4.5) from which
(4.6)
Combining ( 2 . 8 ) w i t h t h e r e s u l t s o b t a i n e d a b o v e , w e c o n c l u d e ( 2 . 1 0 ) - ( 2 . 1 2 ) .
I
Asymptotic Behaviors of the Solutions
91
Proof of Theorem 2
5. 5.1
Using ( 3 . 4 9 ) ,
m+, Find a t H
t h e problem ( 1 . 1 ) - ( 1 . 5 )
1
(r)
such t h a t
T (a) = f
(5.1)
E
2a . S
E
H e r e a f t e r we c a l l (5.1) s o l u t i o n of (5.1)
i s t r a n s f o r m e d i n t o t h e f o l l o w i n g one:
(a).
the transmission equation.
is equal t o the t r a c e
A s a m a t t e r of f a c t , t h e
o f t h e s o l u t i o n of t h e p r o b l e m
(1.1)-(1.5). 1
m+5.2
'(r).
L e t b be a r b i t r a r y i n H
Then, combining (5.1)
and ( 3 . 1 0 ) , w e h a v e
1
T (a-b) 0
(5.2)
-
E
2a
.S
E
(a) = -Tf(b)
t
H
-7( r ) .
L e t u s b e g i n t o p r o v e ( a ) , i n which B > (a1 i s assumed. have
$o
(5.2),
OI
=O.
T h e r e f o r e we c h o o s e b = O i n ( 5 . 2 ) .
By ( a ) of Theorem 1, w e
On s u b s t i t u t i n g ( 3 . 2 7 )
we g e t
(5.3)
or
The d e f i n i t i o n of RE a l l o w s u s t o r e w r i t e ( 5 . 3 ) by
Let E ( > O )
be s m a l l enough i n ( 5 . 4 ) .
Using Lemmas 2 , 3 and 4, we s e e t h a t t h e mapping fU+B.RESi becomes t h e 1 m+c o n t r a c t i o n mapping from H '(r) o n t o i t s e l f i f E i s s m a l l enough and
1 3
B>a>--
.
Indeed,
into
Hideo K A W A R A Dand A Takao HANADA
92
(by 3.19)
(by 3.27)
On t h e o t h e r h a n d , by ( 3 . 2 1 )
m+y1 Here w e n o t e t h a t T (0) s h o u l d be i n c l u d e d i n H f m assume f t H (no). Summing up ( 5 . 4 ) ,
( 5 . 5 ) and ( 5 . 6 ) ,
(r).
T h e r e f o r e , we have t o
have
WE:
1 3
if 5>a>--B. We remove i n t o t h e c a s e - a < 6 2 - 3
.
O p e r a t i n g E - ~ ~ * ( S ~ ) on - ' b o t h s i d e s of
(5.2), we h a v e
Let
E
( > 0) be s m a l l enough.
m+from H
Then
E
-2a
E
.(S )
-1
T
1
2(r)
onto i t s e l f i f a
0.
becomes t h e c o n t r a c t i o n mapping I n f a c t , t h e b o u n d e d n e s s o f T0
and (3.28) y i e l d s
Therefore, by u s i n g ( 5 . 8 ) , (5.9)
and ( 3 . 2 9 ) , we h a v e
Asymptotic Behaviors of the Solutions a =
(5 .1 0 )
$€II'
=
+
{ I - €-2a (S E ) -1T o ) - 1 { - ~ 8 d T f ( 0 )
93 O ( E a+38 ) }
1
+ 0(EB-3a + Ea+35)
= -,BaTf(o)
in
H
m - 2(I'),
i f a + B > 0 a n d a > 0.
1
Combining ( 5 . 7 ) and ( 5 . 1 0 ) , we o b t a i n ( 2 . 1 3 ) .
5.3
We s h a l l p r o v e (b) of Theorem 2 , i n whi ch a = B > 0 i s assumed.
+qo= 0
Theorem 1 f o l l o w s Tf ( J i o )
0 T0(a-qO)
(5.11)
-
E
+
a
2a
on
r.
Choose b =
E
S ( a ) = -T
0 f (I0)) =
Then w e h a v e
I' i n ( 5 . 2 ) .
$o0
From ( b ) of
.
By ( 3 . 2 7 ) , we h a v e
0 TO(a-JIO)
(5 .1 2 )
wh ere SE ( a ) = S E ( a ) + c-2aa. 1
0 a - JI, =
(5 .1 3 )
Then
a > 0 an d
E
E
2a
E
E
-
q00
= E
2a
E
.Sl(a)
By u s e of RE w i t h a =
5,
2 a E E
.R S , ( a ) .
m+l E
- R S1 becomes t h e c o n t r a c t i o n mapping from H
i s small enough.
In f a c t , by (3.19) and ( 3 . 2 7 ) ,
2(1') o n t o i t s e l f i f
we have
T h e r e f o r e we h a v e 1
(5 .1 5 )
5 .4
=
$'I,
= (I-E
0 sl) JI, = $o +
2 a E 6 - 1 0
R
Now w e a r e i n t h e f i n a l s t e p t o p r o v e ( c ) .
assumed. have
a
0 ( c ) o f Theorem 1 g i v e s u s T f(JIO) = 0.
O(E
4a
m+)
in
H
2(r).
1
I n t h i s case, a > 8 a n d a > 0 a r e Put b =
i n (5.2).
Then we
Hideo KAWARADA and Takao HANADA
94 O p e r a t i n g (To)
-1
on b o t h s i d e s of ( 5 .1 6 ) , we h a v e
R e p e a t i n g t h e s i m i l a r a r g u m e n t s as i n t h e p r o o f s of ( a ) a nd ( b ) , E2a*(To)-1SE m+-1 2 ( r ) o n t o i t s e l f i f a > B a n d E i s small becomes t h e c o n t r a c t i o n mapping from H enough.
Then w e h a v e
m + -1 =
6.
$o0
+
O(P ---B)
in
H
2(r).
Proof o f Theorem 3
6.1
Assume f C H
k
(no) (k,?)
5
and f i >
10.1.
Then, from ( 2 . 7 ) and ( 2 . 1 0 1 , we h a v e
(6.2) By u s i n g (2.13) a n d ( 6 . 2 ) , w e h a v e
By a p p l y i n g t h e maximum p r i n c i p l e t o t h e probl em (1.2), u s i n g ( 6 . 3 ) , we o b t a i n
(6.4)
We compute on
(6.5)
r;
(1.3) a nd (1.5) a n d
I
Asymptotic Behaviors of the Solutions
r.
where s is t h e arc l e n g t h of By ( 6 . 3 ) ,
95
we have
(6.6)
From t h e d e f i n i t i o n of S E , we have
(6 .7 )
By (3 .2 7 ) a n d ( 2 . 1 3 ) ,
(6.8)
Combining ( 6 . 6 ) a n d ( 6 . 8 ) ,
(6 .9 )
S i m i l a r l y , we have
(6 .1 0 )
o
b e c a u s e o f ( 6 . 4 ) , J, P u t Y'=VJ,;.
(6 .1 1 )
and -
an an
E H
'(an) nck-2s6(an).
Then YE s a t i s f i e s
--E
2(a+B)*yE
+
= 0
in
From t h e maximum p r i n c i p l e t o g e t h e r w i t h (6.9)
Ql.
and ( 6 . 1 0 ) ,
i t follows
(6 .1 2 )
Here w e h a v e t o assume
k24
s i m i l a r a r g u m e n t , w e have
t o o b t a i n t h e good r e g u l a r i t y of J,".
Repeating t h e
96
Hideo KAWARADA and Takao HANADA
(6.13)
7.
Proof o f Theorem 4 I n the final section we give the proof of Theorem 4 under the drastic
assumption.
Suppose n -
2
1 - R+.
fk
In the same way as in 1" of the proof of Lemma 4 , we transform J,f into J, Then
satisfies
(7.1)
By ( 2 . 1 3 )
of Theorem 2, we have
By substituting (7.2) into (7.1), we have
(7.3)
We compute
(7.4)
.
Asymptotic Behaviors of the Solutions
91
From ( 7 . 4 ) , w e h a v e
Appendix m ,
F o r s i m p l i c i t y , we assume A(u2) t- C o ( r )
1"
a n d rewrite
Here w e s t a t e how t o c o n s t r u c t Jln ( n = O , 1, Z , . . . )
1 d z ~ = a(U1,u2). 1 i n (3.39).
s o l u t i o n of t h e f o l l o w i n g o r d i n a r y d i f f e r e n t i a l e q u a t i o n :
Solving (A.1,2),
JI 0
(A. 3 )
we g e t
= A(u2).exp(-E
a(O , u 2 ) u 1
W e compute
(A.4)
= E 2(a+B). -
1
L e t J,
g; (Ill, u 2 ) .
be t h e s o l u t i o n of t h e p r o b l e m :
I
L e t J,:
be the
Hideo KAWARADA and Takao HANADA
98
in
(A.5)
S o l v i n g (A.5,6)
(A. 7 )
-E
2
R+
and computing
2 ( a + B ) - ~ ~+1 a(u1,u2)?$:
=
E
we can c o n s t r u c t t h e e q u a t i o n which JIz s a t i s f i e s i n t h e f o l l o w i n g way:
Using t h e c a s c a d e s y s t e m d e f i n e d a b o v e , we c a n o b t a i n $* ( n = O , 1, 2 ,
2"
W e put
(A.10) and (A.11)
=
w
IJE
- 8.
Then wE s a t i s f i e s
(A. 12)
--E
2(*+B)-~w
(A.13) w-EIu
From (A.12,13),
=o
=
1
we h a v e
+ a ( u 1 , u 2) 2WE and
wE
=
o(E
+
(n+2) (a+B))
(u2++m).
in
R+2 ,
...).
Asymptotic Behaviors of the Solutions
an d mo r e o v e r (A. 16)
3"
W e compute
whe r e
On t h e o t h e r h a n d , from ( A . 1 6 )
1
1
I f we c h o o s e n + - > m - (or n L -m - 1 ) , 2= 2
t h e n w e ha ve
(A. 20)
By n o t i n g
d l an
r
(3.26)-(3.29).
=-*
a(0,u2)
IE'a
aul
and using t h e d e n s i t y a r g u m e n t , w e c o n c l u d e
99
Hideo KAWARADA and Takao
100
HANADA
Footnotes
an s t a n d s f o r t h e boundary of R.
I I v ~ / ~ s, t a~ n d s
f o r t h e norm of v i n Hm(E).
T h i s theorem w a s p r o v e d i n [ 3 ] f o r t h e c a s e a > 0 a n d B > O .
I n t h i s paper, we
g i v e a n o t h e r p r o o f , which i s s i m p l e r t h a n i n [ 3 ] .
[l] S. Agmon, A. D o u g l i s and L. N i r e n b e r g , Estimates near the boundary f o r
solutions of e l l i p t i c p a r t i a l d i f f e r e n t i a l equations s a t i s f y i n g general boundary conditions I , [2]
Comm. P u r e Appl. Math.
H. Kawarada, Numerical methods for f r e e surface problems by means of penalty,
L e c t u r e Notes i n Mathematics, [3]
1 2 (19591, 623-727.
704,
Springer-Verlag,
1979..
J . L . L i o n s , Perturbations singuliares duns l e s problsmes aux Zimites e t en
contrble optimaZ, S p r i n g e r - V e r l a g , 1973. [4]
J.L.
L i o n s and E. Magenes, ilonhomogeneous boundary value problems and
Applications, S p r i n g e r - V e r l a g , [5]
B e r l i n , New York, 1972.
J. NeEas, Les metizodes d i r e c t e s en tkgorie des gquations e l l i p t i q u e s , Masson, P a r i s , 1967.
Lecture Notes in Num. Appl. Anal., 5 , 101-118(1982) Nonlinear PDE in Applied Science. U S . - J a p a n Seminar, Tokyo, I982
PARTIAL REGULARITY AND THE NAVIER-STOKES EQUATIONS
Robert V. Kohn Courant Institute of Mathematical Sciences
It is a pleasure and an honor to participate in this U.S.-Japan Seminar.
My talk concerns recent joint work with L. Nirenberg and
L. Caffarelli, in which we prove Theorem 1:
The singular set of a "suitable weak solution" of the
Evier-Stokes equations has "parabolic one-dimensional measure zero" in spacetime. I shall explain what we mean by a "suitable weak solution," and by the phrase "parabolic one-dimensional measure zero"; and I shall describe the structure of the proof, avoiding the more technical parts.
A fully complete discussion can be found in [l].
Theorem 1 extends and strengthens results of V. Scheffer 115-191, and our arguments draw extensively from his ideas.
Scheffer has
recently proved a result on "partial regularity at the boundary" [191 i here and in [l] we consider only the interior problem. Section 1. Let
R
Remarks on existence and regularity. be a smoothly bounded domain in R ' ,
initial-boundary value problem
(1.1)
ut + U - V U
- AU +
Vp = f
A-u = 0 10 1
on
Qx(O,T)
and consider the
Robert V . KOHN
102
(1.2)
u(x,O) = uo(x)
on
R,
u(x,t) = 0
on
aRx(0,T)
where uoI
=
0, V*uo = 0,
and V - f = 0
.
aR
The function u = (u1,u2,u3) represents the velocity of an incompressible fluid with unit viscosity; p is the pressure; and f is a nonconservative force. It is well-known that if uo and f are Cm then (1.1), (1.2) has a unique Cm solution on Rx(0,T) for some T > 0 [ 7 1 .
There is also
an extensive theory of strons solutions with less regular data [9,11,20]. if u o
E
If, for example, uo has "one-half derivative in L2" or
L3, one can still show the existence of a unique stronq
solution locally in time [ 2 , 3 , 5 , 8 1 .
One might conjecture that the
strong solution exists for all time; but this has been proved up to now only when the data uo, f are sufficiently small. The concept of a weak solution of (l.l), (1.2) was introduced by J. Leray, in order to obtain an existence theorem that is global Pioneerinq work of Leray [lo] and Hopf [ 6 1 showed the
in time.
existence of a function u and a distribution p such that
Lm(O,T;L2 (a))n L2 (0,T;H1 ( n ) )
for each T
0, where
is roughly the information available on the left of (2.11). The inductive argument, then, uses not @
*
but a sequence of
test functions{$n}, 9, being essentially a mollification of order 2-".
@ *of
As one enters the nth staqe, one knows
(3.5) Qr and an analogous bound for the pressure.
Therefore, using (3.5),
The function $,, satisfies
111
Partial Regularity and Navier-Stokes Equations One bounds the other terms in (2.11) similarly, to obtain
-
Using ( 3 . 4 ) , and assuming that
is small, it follows that
El
One proves a corresponding estimate for D using (2.5) (this is the most technical part), and the induction continues.
The key is the
different homogeneity on the left and the riqht in (2.11), which allows the smallness hypothesis to be useful in (3.6). One can rescale Proposition 1 to obtain a result on Q
=
Qr(x,t)
for any r, using (2.6): Corollary 1: -
For _any r > 0, __
if
J J
Qr
Qr
and -
fIq
(3.8)
5
E2
then a.e. -
on Qr 2
.
Again, the way to understand Corollary 1 is to ignore f and p . says,
(3.9)
It
in essence, that if the dimensionaless quantity
R(r;x,t) =
I!
meas (Qr)
3 (rlul) dxdt Or (x,t)
is small enough, then u is regular on Qr. 2
One may view R(r) as a
local Reynolds number for the flow on the cylinder Qr.
Robert V . KOHN
112 5
A dimension result. 3-
Section 4 .
If ( u , p ) is a suitable weak solution on all of R
3
,
then by
(2.3) and ( 2 . 4 )
As Scheffer observed in 1161, Corollary 1 and (4.1) imply an estimate 5
for the parabolic --dimensional measure of the sinqular set S. 3 idea is simply this:
The
10 ~~
, then "at most points" the average of u on
if u E L
Q (x,t) will
not be too large; at such points R(r;x,t) + 0 as r -+ 0.
To quantify
this, one uses the following Vitali-type coverinq lemma.
Let J be any set of parabolic cvlinders Qr(x,t) contained
Lemma 1:
3
in 5 bounded subset of R xR. -
There exists a finite or denumerable
family J' = {Qr,(xi,ti)} such that 1
(4.2)
the elements of J ' are disjoint;
(4.3)
for each Q E J there exists
Q
C
Q5ri (Xi,ti)
-
Given Lemma 1, we argue as follows. 5
F i x & > 0 ; since f E L4
and q > , we may assume that (3.8) holds whenever r < 6, by choosing 2 6 small enough. By (3.7) and Holder's inequality, there exists E;
> 0 such that
whenever r < 6
Partial Regularity and Navier-Stokes Equations
113
Let V be any open, bounded subset of R 3x(O,-), and let 3 consist of all cylinders Q,(x,t)
such that
(4.5) Qr By (4.4), J covers S n V.
If J ’ is as in Lemma 1 then
by (4.3), and
’Qr . by (4.1), (4.2), and (4.5). Lebesque measure zero.
As & + 0, we conclude that
Since UQ,,
is contained in a
S n
V has
6-neiqhborhood
1
of S, the right side of (4.6) actually tends to zero as & + 0, so 5 the --dimensional measure of S is zero. 3
Section 5.
The dimension 1 result.
5 The argument in section 4 gives a 3-dimensional estimate
for S because it uses the global estimate (4.1), which has scaling 5 dimension To prove a dimension-one result by this method, one 3 must use the dimension-one estimates (2.2) instead of (4.1).
.
Returning to Corollary 1, suppose that the point (x0,t0) is singular.
Then (3.7) must fail for every sufficiently small r > 0.
Heuristically, this means that R(r;xo,tO) is bounded away from zero, i.e. that
Robert V . KOHN
1 I4
Thus Corollary 1 specifies a minimum rate at 1 which singularities can develop. If ] u I qrows as r , it is natural 1 to guess that IVul should grow as . These considerations motivate r "in the L3-mean".
Proposition 2:
There is an absolute constant
following property.
If (u,p)
Navier-Stokes equations
then (x,t) -
near
E~
> 0 with the
5 suitable weak solution of the
(x,t) and if
d regular point.
Proposition 2 implies Theorem 1 by the coverinq arqument of section 4 , using (5.2) in place of ( 4 . 4 ) . The essential idea in the proof of Proposition 2 is contained in the following calculus lemma
Lemma 2:
Let w(x,t) be 5 W1I2 function defined near
(0,O)
E
3 R xR.
E r > O , % R(r) = r-2
jj i W i 3 Qr
Qr
Qr
Notice that R(r) , B(r) and y(r) are dimensionless in the sense of ( 2 . 7 ) .
Proving the lemma is an amusinq exercise, using the
115
Partial Regularity and Navier-Stokes Equations
interpolation inequality ( 2 . 1 ) , Holder's inequality, and the fundamental theorem of calculus.
The conclusion (5.3) is a sort of
decay estimate for R(p) : Corollary to Lemma 2:
(5.4)
For any
lim sup O(r) r-+O
+
E
> 0 there exists 6 > 0 such that
y(r) < 6 * lim inf R(r) < r+ 0
E
.
Indeed, (5.3) implies 1
whenever R(r)
2
E.
3
Choosing 0 < 0 < 1 so that C 2 0
3
0 so that
we conclude
whenever R(r)'E
and B(r)
+
y(r) < 6
.
The assertion (5.4) follows,
with this choice of 6. The proof of Proposition 2 is rouqhlv parallel to the above 3 ut]T , but argument. For a weak solution u, one has no bound on
ii
the generalized energy inequality lets one bound the osc llation in time of
i
IuI2
.
One proves a "decay estimate" like (5.3), for
Br the entire left side of (3.7) instead of for R ( p ) .
Robert V . KOHN
1 I6
Section 6.
Concluding remarks.
One reason for studying partial reqularity is the hope of settling, by this method, certain classical open questions about weak solutions.
Miqht one prove uniqueness or stronq continuity, Theorem 1 alone
for example, without actually provinq reqularity?
does not suffice; one appears to need information about the maximum rate at which singularities can develop.
We note in this context
a qualitative difference between Corollary 1 and Proposition 2: and the conclusion r' u : the hypothesis of the latter concerns all
the hypothesis of the former concerns a fixed Q asserts a bound for
Qr, and the conclusion gives no explicit estimate. Might similar methods be used to prove an estimate of the singular set of dimension less than one?
This would require a
global estimate with scalinq dimension less than one.
Provinq such
an estimate would take, it seems, a fundamental new idea. It may be, of course, that weak solutions are not reqular. An attractive scheme for constructing a solution with a self-similar singularity is proposed in [lo]. Finally, I note that the generalized energy inequality may have uses other than for partial reqularity theory.
In [l], for
example, it is used to prove weighted norm estimates f o r the Cauchy problem, in case the initial velocity satisfies
or
j R3
/u0l2/xl-l sufficiently small.
1
R3
2
luol 1x1
0
(VI)
V(X,d) =
Put
-l i-m v ( x , d ) < m
and
*LO
.
dLO
?@-?-d for d E &(q). "vo, 4
Then
v(x,d)
s a t i s f i e s the desired conditions. 2.2. -
In o r d e r t o o b t a i n t h e e s t i m a t e i n Theorem 2 , we u s e t h e i d e n t i t y W(X,d)\V(X,d)(
(2, 4 ) =
1'
I v ' ( Y , CO 1
2 2
- w(xl,4)lV(xl,d) I dy
+
d l x q(Y)lv(Y,d
which f o l l o w s from
we
-
.
..
$v"(y, d.)v(y, r ) d y
0 1 x1 4 x
=
p -
p
- component of
component o f b o t h s i d e s of (2, 4 ) ,
w
.
.
.
Denote
s(x,d) = - ( W ( X , ~ ) ) ~
then it follows
2 2 s ( x l , ~ ) I ~ ( x l , ~= ) s\ ( x , d ) I v ( x , a ) l
(2, 6 )
I
d l q ( y ) I v ( y , , ) I 2 d y , and
Now we i n t r o d u c e f o l l o w i n g c o o r d i n a t e s depending on CC
i s s a i d simply t o b e
Take
1 1 2dY ,
x1
x1
( 2 , 2).
2
+
):
lP
2 I ~ ' ( Y , o c dY, )~ 1
where
1,
Im d
Imd = -Im(p i )
> 0.
Therefore
la\Imfi
Hence i t s u f f i c e s t o e s t i m a t e
s(0,d)
and
l/s(s,d)
.
w e can u s e t h e e q u a t i o n
s'(x,
OL) =
Im(w';)/Im(ap)
= -Im(w2d)/Im(4~).
The d e t a i l s w i l l be shown i n n e x t s e c t i o n .
For t h i s p u r p o s e
Integral Representation for Equations of Mixed Type 2.3. __
Here we p r o v e Theorem 3 i n view of Theorem 1 and 2 . f o l l o w s d i r e c t l y from t h e e s t i m a t e
(E)l
lim
(E).
177
The e s t i m a t e
u(x, t ) = 0
X+ m
f o l l o w s from Lebesque theorem. l o c a l i z a t i o n of
Here
u(x, t) : u(x, t ) =
x j ( ~ )a r e
i3C
{I€
r‘
The e s t i m a t e s f o r
XI2 c {
2a }
supp
i4 c { T E
1 ~ ,
are same, since
af*b
= af"D6
( = af*D;
(
1-
+
))
if elastic (if plastic).
af*D af
Hence we shall consider the following system which must be satisfied by the first derivatives of the solution ( if it exists ) .
u
(2.Ub
uo
for E- E
= DE
= DEO
o 3
in D- =
I
uo ; af*(tO)DEo
o I 0 1,
Ep- Ee 1.
Let (u,u,c() be its s o l u -
is same to that of the solution of the
By Theorem 2.3, (;,6,&)(t0+0)
problem (2.3) with o l d Ep. Let ( u o , a')
Theorem 3.2. (i) (ii)
(UO,
uO)
=
be the solution of (3.1).
Then hold
(ii,3 )(tO+O),
Let E be the set of elements of Ep such that 2 1 af*(to)o
( 3.6)
Eo
+
rl
= 0.
Then, for every element, (ii,g,E)(t +0) is determined independently of the choice 0
of the next
6-
Proof.
relation of E2'
By (2.3);')
and (2.3)L1) we denote the equations obtained by differ
enciating twice the both sides of (2.3)
and once the 6-k relation of (2.3)b with
respect to time t, respectively, where Ep is replaced by the new Ep. (2.3)")
we denote the system of these equations.
satisfy [2.3)('),
Then (L,y)(to+O)
where [ ) has the same meaning as before.
By and (uo,oo)
Also the solution
Tetsuhiko MIYOSHI
200
of [2.3)(')
is unique at t +O.
) Hence (Iholds.
exactly the same to that of Theorem 2.3.
The proof of (ii) is
Note that for the element of E2 the
equa1ity D ' Eo
holds for the solution (uo,
0')
d (D'); 1 +dt to+o
= 0
of ( 3 . 1 )
If, furthermore, E is not empty, we repeat this discussion until E becomes 2 K empty for a certain K
+ k2(A2)"
2A2(A2)"k2
0) i n t e r a c t s with and
2 k ) l y i n g on the u n i t
41 -
The second c l a s s of i n s t a b i l i t i e s occur f o r A2(A2)'
>
and
0,
o r e q u i v a l e n t l y when (7)
$kB>O
-
where B = A 2 dA2/dk2 = -2(k2
1)(R
-
(k2
. This
-
is t h e Eckhaus
i n s t a b i l i t y and occurs when a r o l l has too s m a l l a wavelength.
It is useful t o
summarize these r e s u l t s by way of f i g u r e 2.
k8, A
I
I
I
I
I
R k Figure 2: Graphs of A , kB and R Busse Balloon
VS.
k. and t h e
212
Alan C . NEWELL
S o l u t i o n s can e x i s t f o r k
< k
0;
d 0, =(kB)
0;
E l l i p t i c unstable
>
for B
a% +
k B ) T
ax 0, $(kB)>
0 t h e u n s t a b l e modes are p a r a l l e l t o
( k , 0).
The a d d i t i o n of t h e c 4 t e r m i n ( 2 6 ) which i n v o l v e s h i g h e r d e r i v a t i v e s o n l y s e r v e s t o c o n t r o l t h e growth of t h e i n s t a b i l i t i e s a f t e r t h e y b e g i n .
It d o e s n o t
i n h i b i t them a l t o g e t h e r nor d o e s it of i t s e l f t r i g g e r any new i n s t a b i l i t y . The r e a d e r might l i k e t o compare t h i s r e s u l t w i t h what h a p p e n s in n o n l i n e a r wavetrains.
x
and
t
T h e r e , t h e a n a l o g u e of e q u a t i o n ( 2 6 ) is a s e c o n d o r d e r s y s t e m i n and s o it i s t h e e l l i p t i c i t y o r h y p e r b o l i c i t y of t h e s e c o n d o r d e r
o p e r a t o r which d e t e r m i n e s i n s t a b i l i t y o r ( n e u t r a l ) s t a b i l i t y of t h e w a v e t r a i n .
For example, f o r a t r a i n of g r a v i t y waves on t h e sea s u r f a c e , t h e h y p e r b o l i c n a t u r e of ( 2 6 ) c h a n g e s t o e l l i p t i c when t h e r a t i o of d e p t h t o w a v e l e n g t h is l e s s t h a n 1.36. (b)
The Newell-klhitehead-Segel
limit.
To t h i s p o i n t , we have t a k e n v a r i a t i o n s i n t h e d i r e c t i v e s p a r a l l e l t o and
p e r p e n d i c u l a r t o t h e l o c a l r o l l t o be of t h e same o r d e r of m a g n i t u d e .
It i s
c l e a r t h a t i f f o r some r e a s o n t h e l o c a l wavenumber is f o r c e d t o s t a y a p p r o x i m a t e l y c o n s t a n t , t h e v a r i a t i o n s in wavenumber of o r d e r IJ p a r a l l e l
-
to (e.g.
a r e accompanied by v a r i a t i o n s of o r d e r J p i n t h e p e r p e n d i c u l a r d i r e c t i o n (kc
+ pL) 2 +
-
2
( J I J M ) = kc
2
)
.
Near k = 1,
we f i n d t h a t v a r i a t i o n s
p e r p e n d i c u l a r t o t h e r o l l a r e of a n o r d e r of magnitude g r e a t e r t h a n t h o s e p a r a l l e l t o t h e r o l l a n d t h i s l e a d s t o a b a l a n c e between t h e t e r m
1
V
+
k B and
218
Alan C . N F W LII
some of t h e
E~
terms i n th e phase e q u a tio n ( 2 6 ) .
T h i s s i t u a t i o n c e r t a i n l y o b t a i n s when
i s s u f f i c i e n t l y small, f o r t h e n
R
-
( s e e F i g u r e 2) t h e bandwidth of wavenumbers p a r a l l e l t o t h e r o l l i s O(JR) a n d
4 -
t h e bandwidth p e r p e n d i c u l a r t o t h e r o l l i s O( JR). A s we h a v e m e n t i o n e d , i n t h i s l i m i t t h e a m p l i t u d e n o l o n g e r f o l l o w s t h e p h a s e g r a d i e n t a s i n (25) b u t t h e
terms on t h e RHS of t h e a m p l i t u d e e q u a t i o n (27) became e q u a l l y i m p o r t a n t t o T h i s b a l a n c e i s a c h i e v e d when R =
t h e s e on t h e L.H.S.
E
4
x.
For r o l l s which a r e
and
e
a =
where x = direction.
E
2
=
x
+
E
2
7)
+(x,
X a s before and
(34) = y/s =
EY, t h e new s c a l i n g i n t h e p e r p e n d i c u l a r
It is now e a s y t o show from (11) t h a t
kaa
=
ax + $_a_ ,
La8
=
1 / ;a~
,
(I
= at =
2 E
$t
Y Y
K,
=
kq8 =
+yy
and
K
e
=
-kqa
=
-~+,;j-
E+-$-
Y
(35)
w'
where we have u s e d s u b s c r i p t s i n o r d e r t o d e n o t e p a r t i a l d e r i v a t i v e s . S u b s t i t u t i o n of (35) i n t o (26) a n d d i v i d i n g by
E
2
g i v e s (we d r o p t h e t i l d e on
Y)
A$t
-
1
2
2(+x + '2 6 y ) ( 2 a x
+
+
+yy)A
-
2(2ax
+
+(zax + q Y a y + $ y y ) ~ y , ,+ ay 2(2ax + z$ a + + y y ) ~= o
+
.
tJYY)(OX
1
+
2
7 $y)A
(36)
Y Y
I t i s r e a d i l y shown t h a t , i f W = Aei$ i n ( 9 ) , e q u a t i o n (36) i s p r e c i s e l y t h e i m a g i n a r y p a r t of e q u a t i o n (9).
C a r r y i n g out t h e same c a l c u l a t i o n on ( 2 7 )
219
Two Dimensional Convection Patterns (recall A
+
2
A) g i v e s t h e r e a l p a r t of e q u a t i o n ( 9 ) .
E
T h e r e f o r e t h e e q u a t i o n s ( 2 6 ) , ( 2 7 ) c o n t a i n a l l t h a t was p r e v i o u s l y known about r o l l solutions.
5.
They a l s o c o n t a i n some new i n f o r m a t i o n .
New r e s u l t s ; some a n s w e r s , more q u e s t i o n s . I n what f o l l o w s we s h a l l t a k e
R
t o be of o r d e r one a n d t h e r e f o r e ( 2 7 ) can
be r e p l a c e d by ( 2 5 ) a l m o s t e v e r y w h e r e .
The e x c e p t i o n s a r e t h o s e r e g i o n s We w i l l c o n c e n t r a t e on t h e
where V = O ( E - ~ ) b u t t h e s e p o i n t s a r e i s o l a t e d . phase e q u a t i o n (26),
A
ae + si;1 V at
+
+
(kB)
E
4
( D 1 * D 2 + D2*D1)A
= 0
which may b e r e w r i t t e n i n a v a r i e t y of ways.
a
V(+kB) = k
+
kB
kBII
,
(37)
I n p a r t i c u l a r we may w r i t e
2
o r i n a more r e v e a l i n g way a s V(
0 i n the
= 0 axis.
These
s o l u t i o n s seem t o g i v e a f a i r l y a c c u r a t e p i c t u r e of t h e r e a l d i s l o c a t i o n s seen i n experiments. F i n a l l y , w e i n d i c a t e how t o i n c l u d e mean d r i f t terms i n t h e model. Consider
$ + (V2+1) 2w where
-
Rw
+ w2w* + u
vw = 0
u = Vx TZ (z i s t h e u n i t v e c t o r p e r p e n d i c u l a r t o
X,Y)
and
F o l l o w i n g t h e p r e v i o u s a n a l y s i s , we f i n d t h a t t h e s l o w e q u a t i o n f o r t h e phase is
+
kt a kB -A % 3-
+ Akll 3aTT +
O(c4) = 0
where
2 a a uL p V ~ = k t = k l l ~
(70)
In (68), t h e p a r a m e t e r l i p mimics t h e e f f e c t of low P r a n d t l number s i t u a t i o n s where mean d r i f t i s c a u s e d by t h e n o n l i n e a r a d v e c t i o n t e r m s i n t h e momentum equations.
I n (70),
V
refers
t o t h e slow d e r i v a t i v e s wi t h r e s p e c t t o
6. SUMMARY. I n t h i s p a p e r we have p r e s e a t e d a m a t h e m a t i c a l framework f o r d e s c r i b i n g
230
Alan C. NEWELI
c o n v e c t i o n p a t t e r n s which i n c l u d e s a l l p r e v i o u s t h e o r i e s a n d from i t we have
In
made s e v e r a l p r e d i c t i o n s a b o u t t h e manner in which t h e p a t t e r n s e v o l v e . p a r t i c u l a r , we s u g g e s t t h a t on t h e h o r i z o n t a l d i f f u s i o n time s c a l e
TH, t h e
c o n v e c t i o n f i e l d d e v e l o p s p a t c h e s , o f t e n of a c i r c u l a r n a t u r e s u r r o u n d i n g a s i n k , i n which t h e wavenumber is c o n s t a n t .
The i n c o m p a t i b i l i t y of t h e s e p a t c h e s
is i r o n e d o u t o v e r t h e l o n g e r t i m e scale of t h e a s p e c t r a t i o t i m e s
TH
and the
p r o c e s s i n v o l v e s a g l i d i n g motion (compare F i g u r e s 3 a n d 5) i n which r o l l d i s l o c a t i o n s move i n a d i r e c t i o n p e r p e n d i c u l a r t o t h e r o l l a x i s .
The c l i m b
m o t i o n , where t h e d i s l o c a t i o n s move a l o n g t h e r o l l a x i s , o c c u r on t h e s c a l e TH
c2
as t h e i r r o l e is t o a d j u s t w a v e l e n g t h , a l t h o u g h small a d j u s t m e n t s of o r d e r w i l l be made on t h e
E-%'~
scale.
While we b e l i e v e w e h a v e made a s t a r t , many q u e s t i o n s s t i l l remain open. Some of t h e s e are. 1.
F o r what c l a s s of models i s t h e f l o w on t h e h o r i z o n t a l d i f f u s i o n time s c a l e a g r a d i e n t o n e ; e q u i v a l e n t l y , f o r which models does ( 4 4 ) o b t a i n ?
2.
What is t h e e f f e c t of t h e mean d r i f t term?
What p a r a l l e l c o n c l u s i o n s can we
draw?
3.
Do t h e p a t t e r n s e v e r s e t t l e down o r do t h e y a l w a y s remain n o i s y ?
If the
f o r m e r is t h e c a s e , i s i t a consequence of geometry where t h e d i s l o c a t i o n s g e t stuck i n corners?
I n a c i r c u l a r g e o m e t r y , one m i g h t a r g u e t h a t t h e
g l i d e motion n e v e r s t o p s .
I f t h e l a t t e r is t h e c a s e , d o e s t h e r e s u l t i n g
c h a o t i c motion l i e on a low d i m e n s i o n a l s t r a n g e a t t r a c t o r , one w h i c h , f o r example, mimics t h e v e r y g e n t l e h e a v i n g of t h e g l i d e m o t i o n as i t r o t a t e s a r o u n d t h e box?
23 1
Two Dimensional Convection Patterns REFERENCES 1.
G o l l u b , I. P. a n d McCarriar A. R.
2.
A h l e r s G. a n d Walden R. W.
3.
Busse F. H. turbulence. Verlag
.
1982.
Phys. Rev. A
1980 Phys Rev. T a t t .
44, -
z,347O.
445.
1980 Hydrodynamic i n s t a b i l i t i e s a n d t h e t r a n s i t i o n t o 97-136. Eds. H. L. Swinney a n d J. P. G ollub. Publ. S p r i n g e r -
1970.
J. F l u i d Mech
4.
Whitham G. B.
5.
N e w e l 1 A. C. a n d W hi t head J. A . 1969 J. F l u i d Mech. 203.
6.
Pomeau Y. a n d M a n n e v i l l e P.
7.
S i g g i a E. a n d Z i p p e l i u s A.
8.
S t u a r t J. T. 1960. Mech. 371-389.
9.
Busse F. H. a n d W hi t ehead J. A.
10.
Chen M. M. a n d W hi t ehead J. A .
11.
G r e e n s i d e H.
12.
Ekrge , P. 1980. S p r i n g e r - Ve r la g
1969.
2,
9,
3, 373.
1981. 1982.
Phys. Lett
S e g e l , L. A .
40,1067.
J. F l u i d Mech. t o a p p e a r .
J. F l u i d Mech. 9 , 353-370.
1971. 1968.
Watson J.
J. F l u i d Mech.
1960.
J. F l u i d
47, 305-320.
J. F l u i d Mech.
S . , Coughran W . M. a n d S c h r y e r N . L.
.
38, 279.
J. F l u i d Mech.
2,1.
1982. P r e p r i n t .
Chaos a n d Order i n N a t u r e pp, 14-24.
Ed. H. Haken.
Publ.
This Page Intentionally Left Blank
Lecture Notes in Nurn. Appl. Anal., 5, 233-251(1982) Notditie(ir PDE in Applied Science. U . S . - J a p c i n Seminar. Tokvo. 198?
Stationary free bo-
problem for circular flaws
with or without surface tension
Departnmt of bbthemtics Faculty of Science vniversity of Tokyo H o n g o Bmyo-ku Tokyo 113 Japan
Free boundary problems f o r flows c i r c u l a t i n g around a c i r c l e or sphere a r e considered. It i s r e v e a l e d t h a t t h e s u r f a c e t e n s i o n p l a y s a c r u c i a l r o l e concerning p e r t u r b a t i o n s and b i f u r c a t i o n s of a t r i v i a l flow. Main t o o l s are i m p l i c i t funct i o n theorems ( c l a s s i c a l or g e n e r a l i z e d ) and b i f u r c a t i o n t h e o r y due t o S a t t i n g e r or G o l u b i t s k y & S c h a e f f e r . Therefore a l l t h e c l a s s i c a l s o l u t i o n near t h e t r i v i a l one are d e a l t w i t h .
§I. Physical maning. Consider a f l u i d around a p l a n e t .
We consider a plane p e r p e n d i c u l a r t o t h e a x i s of r o t a t i o n and we r e g a r d
mind.
We assume t h a t t h e flow is e n c i r c l e d w i t h two
t h e flow as a two dimensional one. c l o s e d Jordan curves
r
t h e planet,whence
i s a given curve.
unit circle i n R The o u t s i d e of
y
2
.
denoted by
y.
tional.
and
y.
The i n n e r curve
The o u t e r curve
r
r e p r e s e n t s t h e s u r f a c e of
For s i m p l i c i t y we assume t h a t
r
i's t h e
y r e p r e s e n t s a f r e e boundary t o b e sought.
i s assumed t o be a vacuum or t o b e f i l l e d w i t h a p e r f e c t f l u i d
whose p r e s s u r e i s given.
and
We keep a f i g u r e l i k e t h e J u p i t e r i n
Hence we t r e a t a one phase problem.
QY , i . e . , we denote by
The flow r e g i o n i s
t h e doubly connected domain between
Y
r
F i n a l l y w e assume t h a t t h e f l u i d i s i n c o m p r e s s i b l e . i n v i s c i d and i r r o t a Then t h e problem is formulated by t h e stream f u n c t i o n
PKBLENA.
Find a c l o s e d Jordan curve
y outside
such t h a t
233
r
V
as f o l l o w s .
and a f u n c t i o n
V
i n fi
Y
234
Hisashi OKAMOTO
(1.1)
AV = 0
in Cl
(1.2)
v = o
on
r
(1.3)
V = a
on
Y ,
on
Y ,
$10~1' + Q +
(1.4)
Is2
(1.5)
Y
UK
1
Y'
Y
= w
= unknown constant
,
0 '
The quantities appearing above are defined below. a , u0 ; prescribed positive constants, the surface tension coefficient (
2
0 )
Q ; a given function defined outside
r
,
;
c7
... given ,
. the curvature of y ,the sign of which is taken to be positive if y is Y'
K
convex,
IQyl
;
the area of 12
Y
REMAIX 1.1.
.
The equation (1.4)is a consequence of Bernoulli's law and the
Laplace equation arising in the theory of surface tension.
In fact,Bernoulli's
law asserts that
1 F I w ~+ ~p
(1.6) where p
+ Y = unknown constant,
is the pressure of the fluid and
'Y
on y
is a potential of the volume force.
On the other hand,the Laplace equation is expressed as (1.7) where peXt
P = Pe*
+
Y'
is the known pressure of the external atmosphere.
pext , we obtain (1.4) from (1.6)and (1.7).
Putting Q = p +
In this regard, Q E 0 o r
Q =-g/r
Free Boundary Problems for Circular Flows ( g ; a constant
,r
= (x2
+
y 2 ) l i 2 ) i s an i n t e r e s t i n g case.
Trivial solution.
If
t r i v i a l solution.
Take a number
yo
of radius
Q
235
i s r a d i a l l y symmetric,then t h e r e e x i s t s t h e f o l l o w i n g
r
> 1 such t h a t nr;
-
TI
= wo.
men a circle
rO w i t h t h e o r i g i n as i t s c e n t e r i s a s o l u t i o n f o r any
I n f a c t t h e corresponding stream f u n c t i o n
The unknown c o n s t a n t i n ( 1 . 4 ) i s
V
U
2
0.
i s r e p r e s e n t e d as
1 2 p(a/rologro )
+
Q(ro)
+ a/ro.
O u r a i m i s t o s t u d y p e r t u r b a t i o n s and b i f u r c a t i o n s of t h i s t r i v i a l s o l u t i o n . Our a n a l y s i s i s based on c l a s s i c a l o r g e n e r a l i z e d i m p l i c i t f u n c t i o n theorems and
t h e b i f u r c a t i o n t h e o r y due t o S a t t i n g e r [ 5 ] o r Golubitsky and S c h a e f f e r [ 2 ] . Now let us c o n s i d e r t h e case where t h e f l u i d i s governed by t h e NavierStokes e q u a t i o n :
PIiaBLEM B.
Find a c l o s e d Jordan curve
y and f u n c t i o n s
1=
(V V
,P
in
R Y'
in
R Y'
on
r
1' 2
that
(1.10)
div
= 0
(1.11)
Y ,
(1.12)
on
(1.13) (1.14) The q u a n t i t i e s appearing above are d e f i n e d below.
V =
(V,,V2)
,
; t h e v e l o c i t y vector
,
P ; the pressure
,
Y ,
such
236 v
Hisashi OKAMOTO
,
; t h e kinematic v i s c o s i t y
fl
y
; t h e outward normal v e c t o r on
,
t ; a t a n g e n t v e c t o r on y , T ( 1 ) ; t h e stress t e n s o r
,t h e
components of v h i c h a r e
b_ ; a p r e s c r i b e d R 2-valued f u n c t i o n on
r
1r -b-- n d r
satisfying
= 0.
A t h r e e dimensional analogue o f PROBLEM B i s a l s o c o n s i d e r e d ( s e e 53 ) .
Mathematical Formulation and results for PROBLEM A.
52.
We p r e p a r e some symbols.
Cm+"(B)
( m = 0,1,2,**. , 0 < c1 < 1 ) ; t h e HElder spaces w i t h u s u a l
, Cm+'(S1)
We f i x a number
(0,l) and a f u n c t i o n
c1 E
Qo = Qo(r) = -g/r
is
When a small
u
or t
Q
E
C2+'([l,
m)).
Q0 -= 0.
C3+'(S1)
H e r e a f t e r w e i d e n t i f y a f u n c t i o n on
R . We denote a domain between denoted by
(
'
KU.
y
i s g i v e n , we denote by
curve which i s parametrized i n t h e p o l a r c o o r d i n a t e s as
< 271 ) .
The t y p i c a l c a s e
and
yu
U
a c l o s e d Jordan
( r O + u ( o ), 0 )
( 0
5
S1 w i t h a 2n-periodic f u n c t i o n on
fiU.
by
The c u r v a t u r e of
y
is
It i s r e p r e s e n t e d as
means t h e d i f f e r e n t i a t i o n w i t h r e s p e c t t o
a t i o n along t h e outward normal v e c t o r on t h e D i r i c h l e t problem
y
U
.
0 ). Vu
a/aUu
means t h e d i f f e r e n t i -
d e n o t e s t h e unique s o l u t i o n of
231
Free Boundary Problems for Circular Flows (2.1)
AV
(2.2)
vUJr= o
U
in
= 0
v I
,
Ru
,
= a
yu For
u
E
C3+a(S1) , Q
E
C2+a-
(a)
Using a c a n o n i c a l pull-back,we r e g a r d it i s e a s y t o see t h a t
for
Q
i f and only i f
F(a,*;-,*)
6 c R , we
and
F (a,Q;u,S)
as a f u n c t i o n on
1
F(a,QO;O,O) = ( 0 , O )
{yu, V
and t h a t
F(a,Q;u,c) = ( 0 , O )
put
f o r some
U
6
E
IR.
i s a continuous mapping from a neighborhood of
xc3+ci ( s1) x R
into
Cl+"(
s1)
x
IR
1
sl.
Then
is a solution
Note t h a t
(Q,;O,O)
in
C2+"(E)
.
Now p e r t u r b a t i o n of t h e t r i v i a l s o l u t i o n i s p o s s i b l e i n t h e f o l l o w i n g s e n s e .
THEOREM 1.
Asswne t h a t u > 0 .
a
=
l
+
z
there e x i s t s a p o s i t i v e constant
11 9 - 90 112+a,R
1 i s determined by
For s u f f i c i e n t l y small for u
E
b_ = ( O , O , b )
X.
( b
Then we put i t
E
Z Vu
1.
-
b
E
2
and
u
E
X
we s o l v e ( 3 . 9 ) through ( 3 . 1 2 )
This i s u n i q u e l y determined f o r s m a l l
, Pu.
Note t h a t
Vu
-
and
P
b c 2
and
a r e independent of Q.
24 1
Free Boundary Problems for Circular Flows A
Now w e d e f i n e a mapping
REMARK.
i n a way s i m i l a r t o t h e c a s e of
The mean c u r v a t u r e
HU
of
y,
x
W
.
H.
i s represented as
i s a continuous mapping from a neighborhood of
H Y
H
in
(O;O,O)
Z x Xx
IR i n t o
Then w e have t h e f o l l o w i n g
?HEOREM 6.
If b
E
Z
is sufficiently small, then there exists
{u,c)
E
X
x
IR
A
such that H(b;u,E) = ( 0 , O ) .
The solution is unique in some neighborhood of the
origin.
54.
Outline of the proof.
4.1.
THEOREM 1 i s proved i f we have shown t h a t t h e F r e c h e t d e r i v a t i v e o f
{u,c}
with r e s p e c t t o for
a
4
{an}n
.
i s an isomorphism from
C3+&(S1)
x
W
cl+ct
To show t h i s we have t o c a l c u l a t e t h e d e r i v a t i v e of
itly:
Claim.
onto
F i s a C'-mapping
and i t s d e r i v a t i v e i s given by
F
F
1
(s ) X W explic-
Hisashi OKAMOTO
242
(4.1)
Here w e have p u t
(
'
means t h e d i f f e r e n t i a t i o n with r e s p e c t t o
The f u n c t i o n
C(Vu)
i s d e f i n e d by
C(vU) =
(4.51
The o p e r a t o r
ou
€I.)
[(ro+u
i s d e f i n e d by
?uw =
,using t h e solution in
AU = 0
The proof of ( 4 . 2 , 3 , 4 ) i s s t r a i g h t f o r w a r d .
U
of
RU ,
To show ( 4 . 1 ) it i s s u f f i c i e n t t o
prove t h a t
(4.6) where
D ~ T ( U ) W=
T(u) = / W u / /
.
? u ~ + C ( VU )W
,
The formula above i s proved i n [ 3 ] .
Here w e o n l y g i v e
YU
a formal c a l c u l a t i o n t o d e r i v e ( 4 . 6 ) . f u n c t i o n on some neighborhood of
"i,.
F i r s t l y we extend Secondly n o t e t h a t
vU
to a
-+
lvVul I
= wu'Vu YU
since
Vu
i s a c o n s t a n t on
y,.
Then we have
class
Free Boundary Problems for Circular Flows
I1 + I2
U = vu+w
Putting
- Vu
, we
I3.
+
AC =
obtain
= v (
= a -
I1 = aUw modulo
+
v Urw
Since I
3
= 0.
+
+
- vu
= t
+
o(
o(
11 W I ~ + ~ ) .
11 W I ~ + ~ ) with
4
Claim.
If
Proof.
Assume t h a t
a
{an)n
A(a) 5 D
, then
u,s
A(a)
r
and
-- - a r avu w.
a tangent vector
+ t
on
y
u '
re o b t a i n
(4.6). i s an isomorphism f o r
a
4
{anIn.
i s injective.
W
1bnsinnB n=l
Then we have
on
y,+,
F(a,Q ;O,O)
A(a)(w,A) = (0,O).
w =
U = 0
It i s e a s y t o s e e
From t h e s e c o n s i d e r a t i o n s w e f i n d
Now we show t h a t
,
GU+,nGu
in
- v I
y,
Hence
243
b S(a, n ) = cnS(a,n) = 0
We r e p r e s e n t W
+
1
c cosne n=O ( n
2
1)
,
w
by t h e F o u r i e r s e r i e s :
. = cox{something)
and
co = 0,
where w e have put
Since if
a
S(a,n)
4
IanIn.
vanishes i f and o n l y i f
a = a
, we
see t h a t
A(a)
is injective Q.E.D.
244
Hisashi OKAMOTO
On the other hand,it holds that A(a) =
". A(a)
"
+
a compact operator
"
Using the claim above and the Riesz-Schauder theory we can conclude that
4 {anIn.
is an isomorphism for a
= 0, D
4.2. Proof of THEOREM 2. When
U
phism from C3+a ( S j X R
cl+a 1 (S )
$+a
an isomorphism
"
1
(5 )
X ~ R
onto
c2+a 1
(S ) x
onto
IR
.
F(a,Q ;O,O) is no longer an isomoru,s 0 x R . However,it is an isomorphism from
From this fact one observes that we are in a
position to use a generalized implicit function theorem. Among others we use a one due to Zehnder 181.
In verifying several assumptions of the generalized im-
plicit function theorem,we use a priori estimates of Schauder type which are borrowed from Schaeffer [ T I . THEOREM
4
For the details,see Okamoto [ 3 ] in which the proof of
is included.
4.3. Proof of THEOREM 3.
From now on we put
G(a;u,c) = P(a,Qo;u,S).
proof of 'THEOREM 1 we have shown that Aia) 5 D
In the
F(a,QO;O,O) is an isomorphism
u>s
for a
4
{a 1 n n
and that A(an)
(cos n9
has a null-space spanned by
(sinno , 0 ) . ( Here we have used (2.7). )
,0
and
In order to use a theory of bifurca-
tion from simple eigenvalue we use tha following Banach space:
with the norm
/I
IL+,+,. Let
G* denote the restriction of G on X3+cLx R
Then it holds that the range of G*(a;*,.)
is included in X1+a
x
.
IR and the null-
space of D
G*(a ;O,O) is spanned only by (cosn9, 0 ). Consequently we can u,S n apply THEOREM 1.7 of Crandall and Habinowitz [l]. The details are in [41. To see whether the bifurcation occurs supercritically or subcritically,we
proceed as follows. space of
( The details are also in
c ~ ( S + ) ~spanned by
and
sinno
denote a canonical projection from C3+a(S1)
onto
Then we define functions @
(4.7)
cosne
[4].) Let a two dimensional
and
5
be C
< cosn9, sinno >
cos ntl
, sinn9
>
by the equations below.
(I -P)G (a;xcosn9 + ysinntl + $(a;x,y) , S(a;x,y)) = 0 , 1
sub-
.
by P.
We
Free Boundary Problems for Circular Flows
(4.8)
G (a;xcosne
2
+ ysinne
+
245
$(a;x,y) , < ( a ; x . y ) ) = 0.
The assumption ( 2 . 7 ) and t h e c l a s s i c a l i m p l i c i t f u n c t i o n theorem e n s u r e s t h a t and
5 are
well-defined i n some neighborhood of ( a ; O , O )
ranges a r e i n
(4.9)
(I -P)C3+'(S1) F(a;x,y)
f
, IR , r s s p e c t i v e l y .
in
E 3 , and t h a t t h e i r
Then t h e e q u a t i o n
PG1(a ; xcos no + y s i n no + @ ( a ; x , y ) , S ( a ; x , y ) )
i s a bifurcation equation.
= o
If we write
F ( a ; x , y ) = F l ( a ; x , y ) c o s nB + F ( t i ; x , y ) s i n n6
2
then t h e solution s e t near
c$
(an;O,O)
is i n a one-to-one
{ (a;x,y) ; Fl(a;x,y) = F2(a;x,y) = 0
,
correspondence w i t h
1 .
Since t h e o r i g i n a l problem i s O ( P ) - c o v a r i a n t , w e have
The bifururcation func tion
PRDPOSITION 4.1. 2.c
C -mapping
03
F is a C -mapping.
F* defined i n some neighborhood of
(4.11)
F ( a ; x , y ) = yF*(a ; x 2
2
(a ; O )
in
B2
There e x i s t s a such that
2
+ y ).
By t h i s p r o p o s i t i o n we o b s e r v e t h a t t h e s o l u t i o n s e t i s composed of x = y = 0 j
and
2 F*(a; x2 + y ) = 0
1 . Of
c o u r s e t h e former corresponds t o
To d e a l w i t h t h e n o n t r i v i a l ones we expand
the t r i v i a l solution.
2
2
2
2
F*(a ; x + y ) = A ( a - a ) + B ( x + y )
as
+ h i g h e r o r d e r terms.
By t h e result of Golubitsky and S c h a e f f e r [ 2 j , i t h o l d s t h a t equivalent t o
F*
F = 0
is
O(2)-
246 if
Hisashi OKAMOTO An # 0
and
# 0.
Bn
Therefore t h e d i r e c t i o n of t h e b i f u r c a t i r i g branch i s
An
determined by t h e s i g n of
Bn.
and
A
Since
B
and
n
n
are given by
F , hence of
w e have t o compute t h e t h i r d o r d e r d e r i v a t i v e of
G1. To t h i s end
we p r e p a r e some symbols.
NOTATIchl.
For w
U(w)
we denote by
C3+'(S1)
t
AU = 0
uJr =
t h e s o l u t i o n of
i n l < r < r 0 ' 0
3
=
U/r=r
aw -r logr ' 0
For
For
w, z
w
E
1 C4+"(5 )
,w2 , w3
t h e symbol
denotes t h e s o l u t i o n of
AY = 0
in
l < r < r o ,
Y = O
on
r ,
c C
?+a( S1)
t h e symbol
ax=o
1 2 3
Wi'
denotes t h e s o l u t i o n of
0 '
2aw w w
w i+3 =
X(wI,w2,w3j
i n l < r < r
- r3logr
where we p u t
Y(w,z)
Free Boundary Problems for Circular Flows
NOTATION '
241
. L
B(w,z) =
w
ay(W,z) ~
ar
ati(w) = r
--
3+a
aw
( W € C
2 r logr 0 0
a2ti(w) +ar
+
a 2U(Z)
2
2 ar
+
Zawz r3logro
Mow the third order derivative of G1
3
aw'z' r3logr 0 0
+
( w
,z
1
( S ) ) ,
E
c
4+a
(S1) ) .
is given by
au(wi)
+a 3 1 arw;+1w;+2 r logr i=l 0
+
9[ rO
3 -w w w - 2 1 w;wi+lwi+2 12 3 i=l
3
-
3
1 w"w' w' 1 WiWf+lWf+2 + i=l 1 i+l i+2 i=l
On the other hand,we have 68 cos n6 = PD3G ( a ;O,O)(cos n0 ,cos no ,cos no ) u l n
.
Therefore,in principle,we can compute Bn by the formula above. However,it is very difficult to decide its sign,since it is very complicated. But we have
248
Hisashi OKAMOTO
Hence any
B
n.
n.
i s negative for a l a r g e
In f a c t we have
o-ro
r0l o g r 0
n.
Thus we see t h a t t h e b i f u r c a t i o n is s u b c r i t i c a l f o r a l a r g e
4.4.
i s negative f o r
On t h e o t h e r hand, A
6.
Proof of THEOREMS 5 and
It i s not s o hard t o v e r i f y t h a t
Hence t h e proof of THEOREM 5 or
is a CL-mapping.
H and
H
6 a r e completed by checking
n
that
D
H(O;O,O)
or D
u.E, a t i v e s a r e given below.
4
D H (O;O,O)w
u l
H(O;O,O)
=
-0 ( 2
is an isomorphism,respectively. The deriv-
w + w" ) +
rO
5
( w
c3+a ( s1) x R
we f i r s t show t h a t it i s i n j e c t i v e .
C 3 + W ) ),
rO
In a way similar t o t h e proof of THEOREM 1 we can prove t h a t an isomorphism from
E
onto
c'+~(s~)
X B .
TO
D H(O;O,O) u,s
treat
D U,S
is
H(o;o,o),
Free Boundary Problems for Circular Flows
,.
H (O;O,Oj(w,h) = (0,O) , then w
If D
h
and
249
satisfy
U,S
(4.131
J-n/2
J
We change the variable from 8
to
-n/2
s E
sine
h
.
Then w(s) 5 w(0)
satisfies
A
Expanding w
by the series of the Legendre polynomials,we see that w
must be
a constant. Then (4.14)implies that w E 0. Consequently '(w,X) = (0,O). A
To show Chat Range D U,S
fine operators A
P
and B P
H(O;O,O)
= Y x H ,we do as follows. Firstly we de-
by the equalities below.
v=-(-w"+w'tane 2 2r 0
(4.15)
CI
+pw)-h--+~w-X, 2r2 1-I
(WCX),
(4.16)
(
1-1
is a positive parameter ) .
Then B
t L ( X X R , Y x R ) is a compact operaP tor. By the Riesz-Schauder theory it is sufficient to show that A is an iso-
u
morphism from X x IR
onto
Y x R , we have to find a
Y x R I'or some 1-1.
, we
employ the Tollowing
NOTATION.
E
(w,h) c X x R satisfying (4.15) and (4.16). Observe
that we have only to show the surjectivity of
YP
Therefore,for a given (v, O ,
(3)
r > 0 ,
C a r e f u l n u m e r i c a l c o m p u t a t i o n s [ 4 1 i n d i c a t e t h a t i n d e e d t h e blowup o c c u r s w i t h t h e power 2/3 a s o b t a i n e d by Zakharov and Synakh. Concerning t h e n a t u r e of t h e s i n g u l a r i t y i n t h e s u p e r c r i t i c a l c a s e l i t t l e seems t o be known. W e have l o o k e d i n d e t a i l i n t o t h e p r o b l e m of u n d e r s t a n d i n g t h e
form ( 2 ) o f t h e blowing up s o l u t i o n i n t h e c r i t i c a l c a s e .
For tech-
n i c a l r e a s o n s w e have so f a r r e s t r i c t e d a t t e n t i o n t o t h e c a s e
N = l
a = 2 . W e h a v e shown t h a t i n t h i s case t h e r e i s a f u n c t i o n z ( t , x ) 1 1 i n H (IR ) f o r - ~ ~ i t < O O<E,,, , s u f f i c i e n t l y small, such t h a t f o r each
Xo # 0
,
Focusing Singurarity Nonlinear Schroedinger Equation
is a solution of (1) in
E
5
~
t < 0
sup /z(t,x)j
(-t)2'7
(4)
-
+
o
255
and as
t
+
o.
X
In other words we have shown that singular solutions of the form (3) exist with
z
being a lower order correction in view of
We do not know why solutions of the form ( 3 ) arise as singular
(4).
solutions for a broad class of initial data as has been observed numerically. The main tool in the analysis is the study of the linearized problem about
2iwt + Aw
(5)
If
Schroedinger equation
R
w
=
-
w
+
(cr+l)R2"w
+
OR'";
= 0
.
then we may rewrite ( 5 ) i n system form
u+iv
L+ = -A
L-
=
+ 1-
(2a+l)R2"
-A + 1 - R 2 0
On pairs of functions
f1
9'
in
. H1 x H1
define the bilinear form
(7)
One verifies easily that this bilinear form is invariant for solutions of ( 6 ) .
However, B
is not an inner product in
H1
x
H1
cause it is not positive definite owing to the nullspace that has. One easily finds that the function
satisfy
be-
L
256
D. MCLAUGHLIN, G . PAPANICOLAOU and M. WEINSTEIN
(9)
Lnl
= Ln2 = 0
,
L2n 3 = L2n 4 = 0 .
Moreover these null vectors are associated with the classical symmetries of our problem that take a solution
where
@(t.x)
into
(x,g,xo,to) are four parameters.
One might expect that the bilinear form tions in
H1
n2, n 3 ,
n4
X
H1
B
restricted to func-
n1 ,
that are orthogonal to four function pairs
(the biorthogonal basis for example) is positive. 2 u < ( N = l in the present N
This is true in the subcritical case discussion) and in fact H 1 X H1
inner product in
B
becomes then equivalent to the standard
.
But this is not true in the critical
case!
In the critical case there is one more symmetry to the problem (N=l, u = 2 )
where
X =
.
a-l,
T =
linear function. solutions with
jA2ds, 8 = Ax
and
a = 0
, i.e.
a
is a
(Notice that this transformation leads to singular
fi singularity; they have never been observed in Therefore, in addition to ( 8 ) we have
numerical experiments.)
But, without having another classical symmetry, we also have (11)
n6
=
(:)
It can be shown that space of
L
and that
, L+p = -x2 R , n1,n2,...,n6 B
with
L4n 6 = 0
.
span now the (generalized) null-
restricted to functions orthogonal to six
Focusing Singurarity Nonlinear Schroedinger Equation
function pairs Hl
x
H1
nl,
... ,ri6
257
is an inner product equivalent to
.
One now looks for solutions of the form ( 3 ) and one must show a
z(t,x) with the correct properties exists.
The power
2/7
emerges as the only suitable candidate for this purpose and the structure of the nullspace discussed above is essential. *Supported by Air Force grant AFOSR-80-0228.
REFERENCES Zakharov, V.E. and Synakh, V.S., The nature of the self-focusing singularity, JETP 41 (1976) 465-468. McLaughlin, D., Papanicolaou, G. and Weinstein, M., Focusing and saturation in nonlinear beams, to appear. Weinstein, M., N.Y.U. Dissertation, 1982. Sulem, P.L., Sulem, C. and Patera, K., Numerical investigation of focusing singularities, to appear. Zakharov, V.E. and Shabat, A.B., Exact theory of two-dimensional self focusing and one-dimensional self modulation of waves in nonlinear media, JETP 34 (1972) 62-69. Ginibre, J. and Velo, G., On a class of nonlinear Schrodinger equations I, 11, J. Funct. Anal. 32 (1979) 1 - 3 2 , 33-71. Glassey, R.T., On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrodinger equation, J. Math. Phys. 18 (1977) 1794-1797.
This Page Intentionally Left Blank
Lecture Notes in Num. Appl. Anal., 5 , 259-271 (1982) N o t i l i n e a r PDE it1 A p p l i e d Scieiice. U.S.-Jrrpan S e m i t w r . Tokyo. 1982 Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold
Mikio Sato RIMS, Kyoto University, Kyoto 606 Yasuko Satc Mathematics Department, Ryukyu University, Okinawa 903-01
In the winter of 1980-81 it was found that the totality of solutions of the Kadomtsev - Petviashvili equation as well as of its multi-component generalizati.on forms an infinite dimensional Grassmann manifold [l].
In this picture the time
evolution of a solution is interpreted as the dynamical motion of a point on this manifold.
A generic solution corresponds to a generic point whose orbit (in the
infinitely many time variables) is dense in the manifold, whereas degenerate solutions corresponding to points bound on those closed submanifolds which are stable under the time evolution describe the solutions to various specialized equations such as KdV, Boussinesq, nonlinear Schrodinger, sine-Gordon, etc. We foresee that a similar structural theory should hold also for multidimensional 'integrable' systems.
§1. The universal Grassmann manifold F o r a vector space
Grassmann manifold
V=V(N)
(say, over
GM(m,V) (=GM(m,n))
C) of dimension N (=m+n)
is by definition the parameter space for
the totality of m-dimensional subspaces in V. GM(m,V)
=
the
We can write
{m-frames in V} / GL(m)
where an m-frame means an m-tuple of linearly independent vectors. homogeneous space of the general linear group GL(V).
259
GM(m,V)
is a
Mikio SATO and Yasuko SATO
260
Further, itis viewed as an algebraic submanifold (of dimension mn) of the N
dimensional projective space P(/\%)
(m)-l
projective embedding). denote a basis of
by letting an m-frame
( 5 ( 0 ) ,. . . ,
If
V, then
antisymmetric in suffixes) satisfy the Plccker's relations:
and vice versa; i.e. a point in the ambient IP(/\?V)
lies in the embedded
if and only i f its projective coordinates E;,o.*.
, 05!2.. Y ;
and, denoting by
Y GM (m,n)
those points
corresponds, we have a cellular decomposition GM(m,n) = 1 Y Y = g o + * * . + i lm-1 --m(m-l) GM (m,n) (Cmn-IY! / Y I = size of 2
'mn (resp.
GM
=
8,
UGM'). Y
Consider the infinite dimensional vector space V (resp.
c)
consisting of
262
Mikio SATOand Yasuko SATO
elements
5
( 5 u ) u E z , with c u e & , cu
=
(Setting e,, = ( d , , v ) u e Z t ~
=
for v 0).
5
one also writes
1
=
r.
subject to the condition z
v
m
In any case we have, for the PlGcker coordinates 5 Y (t)
where
I$
denotes the empty Young diagram, x,(t)
for the general linear group, and obtained from xy(t)
xY (2t )
by replacing tv
one has
< a-'.) of d;(t),
denotes the character polynomial
denotes the differential operator
by
i a ~7 .
(After H. Weyl, xy(t)
admits various expressions, one of which is
v. v,
v v where
is the irreducible character of the symmetric permutation
ny(l '2
group of
/ Y / letters, labeled by the Young diagram Y
v1 cycles of size
conjugacy class consisting of
5
We call
4
(t)
the T
above formulae show that
function of
T(t)
1, v2
and evaluated at the cycles of size 2 , etc.)
(Notation: T(t; 6 ) or
T(t)).
The
plays the role of generating function for Plccker
coordinates:
dratic dif-
and
ferential equations, or, what amounts to the same, the form of 'bilinear' equations of R. Hirota. Summing up, we have Theorem 1.
Although any
f(t)c
E[[tl,t2,***]]
admits the formal expansion of the
x
form: f(t) = Lc (t), where the coefficients are uniquely given by c = Y Y Y Y function of some e; if and only if its xY ( a t )f(t) 1 t ~ it, represents the T
Ea
coefficients cy
satisfy the PlGcker's relations.
265
Infinite Dimensional Grassmann Manifold Theorem 2.
f(t)E(C[[tl,t2,*-*]]
An
is the
T
function of some 6 6 GM
if and
only if it satisfies theHirotabilinear equations of the form
Moreover these exhaust all the Hirota equations to be satisfied by
T.
These quadratic differential equations are also equivalent to the quadratic difference equations. Namely, Theorem 3. SO
that
(Addition formulae)
t+[a]
SQ0..
For any a t (c
(tl+a, t2+!jCt2,*-*).Let a i € E for
=
.‘m- 1 (t)
=
1 3 [a] = (a,?1 2 ,y ,*
we set
i = O,-.-,N-l
*
.)
and define
a )‘c(t+[aa ]+**-+[a I), O S R . < N ‘m-l,*”, to 0 ‘m-1
A(a
II ( a . - a . ) . Then (t) satisfy the PlGcker’s m>i>iZo ‘m- 1 _.relations for GM(m,V(N)). This property again characterizes the function T .
with
A(am-l,.-.,ao)
’
=
E.g. we have
Denote by
E
UiJ
the linear operator on V
sending e
iJ
to
e
and
all the
e K # u , to 0 ( i . e . EVu&eK = c,ev), and by L the vector field K’ uu induced by E (i.e. EL IF(O -Res P*dx. Thus
&
{differential oprators}
fcL,x,,
as a subring. We have:
&
=
E
;
=
&[[XI],
P
as left
class of
similarly with
Res Pdx
mod &x
=
P+ + P-
with
P+
=
=
&(m)
and
&
& .
Then V
of 5 1
by its maximal left ideal
1 cveuEV correspond to the residue -m,
with
l(-)vS-y-let
=
6 /Ex.
E
V*,
so
Further we write
V =
that we have:
< S ' , P C > = 0 s.t. av(x)
are holomorphic in
1x1 < 6,
V
"/FvV
+
1
d v
av(x)(z)
-m(y<m
I
-v-1
(x) I
v * ==,
are bounded as
1x1 < 6 1,
both uniformly in ={
'Jv! la
0 and
3k61N s.t. a (x)
V
are polynomials of
x
of
degree 2 k}, and get:
Vans(') =
that W
d -V eZ(') 1 wv -(-)dx 6?
=
v20
-1
d -V 1 (z) -wc
v20 : W E )&
with w* = 1. 0
with
&
=
Let
C((x))
(=
denote the totality of such nionic operators the field of formal Laurent series in x, which
is the field of quotients of
C[[x]]),
there exists m , n E N s.t. x%
and
E E[[x]]
=fl)x.
which is monic (i.e. w =1) 0 is again an operator of the same kind which we shall write W-l =
Consider the operator W so
a;
I lanax,
&ana
for y = l , Z ,
...).
satisfying the additional condition that
W-'xn
Set 'V
=
both @
For W
Ep
we set y(W)
[ ~ ~ ~ x l l This . definition of (This is because xV' Theorem 5 .
For
W
=
and
xnw:
C e v C V ; VrD is a l s o characterized by
=
5,
=
1 or 0 according as Y=$
-1 n 41 (W x )V , where
y(W)
n
or
is s o chosen that W-'xnE
does not depend on the choice of such n .
).'V
tv, y(W)
C
GM
and this map is bijective, namely
In this correspondence, the inverse images of
vfin and Wana('),
m (i.e. x wv
v 2.
far, accounts are given for the 1-component case. To generalize it to
the r-component case we shall modify the notations a s follows. For U 6 Z and the O-i
1, and otherwise
p o i n t ( k g r a n g i a n ) form i s
The f i n a l minimum over
it i s
Suf
as i n 1 B .
TT
is
if
-m
The o p t i m a l i t y c o n d i t i o n s are
which gives an i n t e r e s t i n g form f o r
u.
It i s the character-
i s t i c f u n c t on, or more e x a c t l y a m u l t i p l e
of t h e
l//P-Q
c h a r a c t e r i s t i c function, of t h e s e t bounded by t h e l i n e between
and
P
Q
on
I-
--where t h e s e a r e t h e p o i n t s ( n o t
n e c e s s a r i l y unique) a t which Thus
Vu
=
g
except a c r o s s t h i s l i n e ; on t h e l i n e ,
s i n g u l a r measure of mass one and magnitude
>
Q = (0,-r).
i s t h e normal v e c t o r of
on t h e c i r c l e
The Lipschitz c o n s t a n t i s
x
n
and
1/2r
c1
$,J -trx)
An optimal
u
and
n
r
(nfn,).
( i )and ( i i ) of Theorem 15 a r e g e n e r a l i z e d as f o l l o w s by t h e G
-
equation.
Recall
t h e s e t G d e f i n e d b e f o r e Theorem 2: m
Theorem 16 ( [ 3 6 ] ) . Let (p,h,H,H*) (H#H*)
b e given w i t h {An}n=O=a(Ap,h,H)and
m
{X~}n=O=o(Ap,h,HY).L e t , f u r t h e r m o r e , N b e f i n i t e and Ozn1< n2 E, 2 0
1 1 = - - - > q P
Put for
vc(S)x,
Let
Theorem 2 . 4 . p
=
and
3
2
jG1
-
=
pj(0,c).
-
ao, c o ,
[0,1), R = 0 , 1
2-R n e
'
-1< I - - - 2.
p
n+A
[0,1]
c1 E
v(X,c)
E
Pc =
(A-Bc)-'(I-Pc)
RAcu(c) a
Go
> 0
satisiy
he us before.
Suppose
1
5
q 5 2
324
Seiji UKAIand Kiyoshi ASANO
(iii) Under t h e c o n d i t i o n o f ( i ) ( i i i w i t h a y-v(O,c) c Y p ' - ,
-M0v(O,c)
=
and -Bcv(O,c)
13 = P = 0, v(0,c)
=
= u(c)
Combining this with the estimate in [ 5 ] for of
Proposition 2.5. Let
n 2 3
Then t h e r e is a constant
al
=
A(l
and noting that the nullspace
R
c
(2.11)
(0)hc + @ OC
=
and Go
C 2 0
be as b e f o r e .
and for any
c
6
Let
Brio],
P
-1
=
Lp.
2 + -).
The inverse Bc @c
Wp,
is invariant in c , we have the
Pc
with
r
holds i n
E
obtained in Theorem 2.4 is also useful to solve ( 2 . 4 ) .
i s substituted, it is reduced to
Rc(0)hc
Proposition 2.6. L e t
-
B c 6 = -KcRc(0)hc.
Bc-lKcRc(0)hc.
n
2
3
and
co
be as before and 2et
If
Therefore
Stationary Solutions of the Boltzmann Equation These two propositions enable us to (2.5). when
c
-L
0, and that if
n
=
8 > 0, (2.11) becomes meaningless
a2
u = jclav
in (2.5) to write
0.
c by
3 , 8 = 0 is excluded since then (2.10) becomes vac-
But this difficulty can be removed as follows.
p.
then a1
for
apply the contraction mapping principle
It should be noted, however, that if
u o u s for
-G[v]
to
for
Put
-G[v](c)
p
2
=
0. For functions v
If
a such that a1
0
and
if
c
> 0
and Proposition 2.6
is sufficiently small.
(ii), G
maps
Proposition 2.5 and writing the norm of
where
0 =
a
-
al > 0, T
=
a2
-
LY.
By virtue of Theorem 2 . 4 (i)
Vi,E
into itself, and by the aid o f
Vp
as
B ,E
111 111,
> 0, whence the desired conclusion readily fol-
*
lows.
Now
G
has a unique fixed point
solves (2.5) uniquely.
Theorem 2.4(iii)
the proof of the
Theorem 2 . 7 .
Let
n 2 3
and l e t
v = v(c)
6
V;,€
and
uc
=
lc/"v(c)
and Proposition 2.6 (i) then complete
326
Then there e x i s t s a p o s i t i v e number
and a constant
BIEO], (2.1) has a unique LP-s,Zution
c
E
E
> 0
f
u
.
Moreover
C 2 0
u
c
E
such t h a t f o r each Vp
B ,E
for1 any
and
Obviously fc
Co
go ( c
-+
f c = gc
+
g;/'u
i s a d e s i r e d s t a t i o n a r y s o l u t i o n t o (1.1) and
0).
3 . S t a b i l i t y of S t a t i o n a r y S o l u t i o n . I n ( l . l ) , put
f = fc
Then
+
g ol/'w
w = w(t,x,S)
= g
+
go1'2(uc+"),
should s o l v e
If we would have a n i c e decay e s t i m a t e i n l i n e a r i z e d e q u a t i o n t o (3.1),
t
of t h e l i n e a r semigroup f o r t h e
then we could prove t h e e x i s t e n c e i n t h e l a r g e i n
time f o r t h e n o n l i n e a r problem (3.1) by t h e technique developed f o r t h e c a s e
Stationary Solutions of the Boltzmann Equation [1,91).
c = 0 ( s e e e.g.
327
However such an e s t i m a t e i s d i f f i c u l t t o deduce because
of t h e presence of t h e term
l'[u
C'
'1
which i s a n o p e r a t o r w i t h " v a r i a b l e co-
e f f i c i e n t " , and s o w e have t o l i n e a r i z e (3.1) i g n o r i n g a l s o t h i s term. a g a i n meet t h e o p e r a t o r
E (t) = e
w = w(t)
Then i f
of ( 2 . 3 ) .
Bc
tBC
Thus w e
Suppose i t g e n e r a t e s a semigroup
.
is a solution t o (3.1), i t s a t i s f i e s t
(3.2)
w(t) = Ec(t)wo
+ .f
Ec(t-s){2r [u~,w(s)]+~[w(s).w(s)]]~~
uc = 0
When
as i s t h e c a s e with
c = 0, t h e e x i s t e n c e i n t h e l a r g e i n
(3.2) can be shown i f t h e decay r a t e
decay with
l ' [ u c , w]
y > 1 i s r e q u i r e d a s w e l l a s t h e s m a l l n e s s of
when u
uc
for
y > 1/2,
is available with
E c ( t ) = O(t')
b u t i n o r d e r t o d i s p o s e of t h e e x t r a l i n e a r term
t
0,
the
.
The d e s i r e d decay s h a l l be found s t a r t i n g from t h e semigroup
:t B Em(t) = e
g e n e r a t e d by
m
of ( 2 . 6 ) .
Bc
t r a n s f o r m J-l[(A-A)-l] m
Be.
on
R e c a l l t h a t a semigroup
etA
of t h e r e s o l v e n t o f t h e g e n e r a t o r
is t h e i n v e r s e Laplace A.
Apply t h i s t o
By v i r t u e of Theorem 2 . 1 , w e have t h e o r t h o g o n a l decomposition
L
2
,
and can f i n d t h a t
while for
1 5 j
S
n+2,
Suppose
Proposition 3.1.
1
Iq 5
2
5
p s
m
and
m = 0, 1. Put
n l - -). 1 2 q P
y1
= -(-
Then there is a constant
C >_ 0
and for all
c E lRn, t 2 0
Theorem 2.2, in this time with
6
=
4
1 -P
.
Take the inverse Laplace transform of (2.8) to obtain
(3.4)
Ec(t)
m
=
where, writing
and
1
5
j < n+2,
It suffices to proceed exactly in the same way as in the proof of
Proof.
where
and
rEc(t)e
+
(y-rE:(t)*e)**Dc(t)*iorEz(t)e
T a c k ) = Tc(X)(1-Tc(A))-',
* means the convolution in
t;
329
Stationary Solutions of the Boltzmann Equation
*
No c o n f u s i o n s a r i s e w i t h t h e a d j o i n t symbol
Let
P r o p o s i t i o n 3.2.
[ 0 , 1 ) , there is a c o n s t a n t
with y 2
=
1 y(n-l+F))
Note t h a t 3.1,
y
i f
n
C
2
1
= $n-1)
n
s u b s t i t u t e d i n t o (3.4),
=
3
c
t
if
only
rewrite
Let
y > 1/2
and
p, a
as
For 8
n
is even.
if
8 > 0.
Propositions
g i v e d e s i r e d estimates of
and
Ec(t)
More p r e c i s e l y i f w e
H [ w ] ( t ) , w e g e t t h e f o l l o w i n g estimates. p o , cx0
E
B[co],
by t h e a i d of t h e scheme i n [S] s t a t e d e a r l i e r .
Theorem 2 . 7 ,
Then
be a s in P r o p o s i t i o n 2.3.
and f o r any
i s odd and
w r i t e t h e r i g h t s i d e of ( 3 . 2 ) as
po < n .
co >
> 1 is possible for
3.2 a n d (3.3),
Ec(t)*,
and
n 2 3
.
and i mpose t h e a d d i t i o n a l c o n d i t i o n
In
Seiji UKAIand Kiyoshi ASANO
330 where a
=
IIuAl
and xpo
5
B
-0
c1
c(c( O
-*
0 (c
111.11='sup(l+t)Yl\w(t)[/ . XP a
By Theorem 2.7, Icl-Oa
0).
-f
It then follows that if wo
is small in Xp
Zq, and
B
is small, H
c
XP ) D is the desired solution to B 0([O,,);
traction map on a ball o f the Banach space of functions w(t) such that
Illdl\
K~/P,
?
K
P
P
.
i s positive definite, satisfying
v,
L e t a(A ) be t h e s p e c t r u m s e t o f A P
P'
w h i c h i s t h e complement of t h e r e s o l v e n t
s e t P ( A ) o f A i n t h e complex p l a n e C : P P p ( A p ) = {AcC: t h e r e i s a bounded i n v e r s e (A-A ) - ' P
from X
P
i n t o Xp}.
By P r o p o s i t i o n 2 o(A ) i s a p a r t o f r e a l l i n e w h i c h i s bounded below. P
Let
X=
i n f a(A ) . P
Then we have
342
Teruo
USHlJlMA
An e q u i l i b r i u m {p,v=O,P,J,B,E=O}
Definition 3
and u n s t a b l e i f i > O , i = O , and
X c(6)
6 > 1, there exist
and X,Y
t
B(F,r)
r > 0 and c ( 6 ) > 0
where
B(?,r)
-
U
and its radius r. Proof. Because of our conditions (1.151, we get
such that
is a ball whose center is
367
Chaos and Age Dependent Population Model
Therefore we can show easily
(1 DF($x/~ Here
X
.
min
2
JA,in(Ix (1
x
( for all
E
means the minimum eigenvalue of DF(G)*DF(c).
R~ By the continuity,
where At
t
2 (1 + -
c(6) :
c.q.f.d.
6).
Jhmin
Lemma 2. For sufficiently small open neighhourhood W bounded set B, there exists a positive constant c(W,B)
of
?? and any
such that the equation
GAt(w) = b
has at least one solution w
E
W
for any At > c(W,B)
and for any h
E
B.
Using these lemmas we can constract a snap-hack repeller. Thus we can prove the conclusion of the theorem.
2.
An age dependent population model.
We consider here an age dependent population model which is described by the following equation:
Masaya YAMAGUTI and Masayoshi HATA
368
N
-
( I: b(k)uF)(R
k=l
N C b(k)ut) k=l
(2.1)
where we denote
O such that
t 0 for any n
2 0.
3 represent a homoclinic orbit of ha which is found
Chaos and Age Dependent Population Model
313
by starting in a fixed point and iterating backward.
1
Figure 3. Homoclinic orbit of h
. 1
Using a transversal homoclinic orbit
transversal homoclinic orbit
P - ~ =
t
‘P-n’ n>-O of ha, we construct a
{P-n} n ~ Oof Ha as follows;
( p-n ,p-n
,..., p-,
6
R~
for
n
2 0,
since from (2.141,
Since the existence of a snap-back repeller is a stable property under small CLperturbations and the orbit
“-n’
n>O of
Ha
is contained in the interior of Q,
E
0
, satisfies
sup
I/Dw//
E
1 i s equivalent t o the
A c c o r d i n g t o Lemma 2 , one may g u a r a n t e e t h a t
+
to 5 t 2 t
inequality
1
,
by t a k i n g
small.
//Vwo[(
I / w o ( ) 5 c / / V w o \ / , we s e e t h a t i f
condition of Definition 1 ensures t h a t and h e n c e Lemma 3 e n s u r e s t h a t
Mindful of P o i n c a r e ' s
11
is taken small, then the
//vwot]
]/w(t)Il
//Vw(t)
/ / V w ( t ) / l is s m a l l ,
is s m a l l f o r a l l
is s m a l l f o r a l l
t 2 t
t t t
+
0 '
.
1
Thus
t h e c o n d i t i o n of Theorem 1 i s s a t i s f i e d . Next we check t h a t t h e c o n d i t i o n o f Theorem 1 i m p l i e s t h a t of D e f i n i t i o n 1.
/I
A c c o r d i n g t o Lemma 1 , one may g u a r a n t e e t h a t to 5 t
t
S
+
1 , by t a k i n g
a c c o r d i n g t o Lemma 3 . time
to
+
1
,
implies
small.
/lw,II
]/w(t)
But t h e n ,
is s m a l l , for I/Vw(to+l)
11
i s also small,
Hence t h e c o n d i t i o n o f Theorem 1, c o n s i d e r e d w i t h s t a r t i n g IIVw(t)
11
is small for
Poincare's inequality, (/w(t)I/ is small for
t
2
t 2 t
t
+
+
1
1
.
.
Thus, remembering
This completes
the proof. The n e x t t h e o r e m i s more c o m p l i c a t e d , b u t proved by a s i m i l a r t y p e o f argument
.
I.he s t a b i l i t y
Theorem 2 .
D e f i n i t i o n 2 & e q u i v a l e n t t o anu one
condition
o f t h e f o l l o w i n s conditions
(i) There e z i s t numbers Atk
__
w
E
J
and 1 -
/lvw0ll < 6
i i i ) There e z i s t numbers
6,T>O
such t h a t every p e r t z e b u t i o n
w
,
, satisfies
6,a,A>O
such t h a t every p e r t u r b a t i o n
w
,
386
John G . HEYWOOD
with __
(iiil w
J
E 0
[lwo(( < 6
woe J
, satisfies
Thcre e x i s t nunhers
such t h a t every perturbation
G,cx,A>O
w , li)ith
Ilvw0II < 6 , s u t i a f i e s
and 1 -
One o f o u r p r i n c i p a l r e s u l t s a b o u t t h e n u m e r i c a l a n a l y s i s of p r o b l e m (1) is t h a t t h e e r r o r c o n s t a n t s of P r o p o s i t i o n 2 r e m a i n hounded a s solution
u
Theorem 3.
&
t 2 0
K , ho > 0
__ Proof.
t
-+ m
, if
the
b e i n g approximated i s e x p o n e n t i a l l y s t a b l e .
If. , and
u,p
&
if
uh,ph
g g continuous
is exponentially
u
4d i s c r e t e
solutions defined
s t a b l e , then there e x i s t constants
such t h a t
Rather than a c t u a l l y choosing
as i n D e f i n i t i o n 2 , i t w i l l h e more
6,T
c o n v e n i e n t t o c h o o s e them i n a c c o r d a n c e w i t h Theorem 2 , so t h a t f o r a n y s o l u t i o n v
of ( 6 ) s a t i s f y i n g
IIV(v-u)(to)
I(
< 6
, there holds
The main p o i n t t o b e e s t a b l i s h e d i s a n i n d u c t i o n s t e p f o r t h e v e l o c i t y e r r o r estimate. of
h < ho
We c l a i m t h e r e e x i s t c o n s t a n t s and
to 2 0
, if
K
and
ho
such t h a t , f o r any c h o i c e
Numerical Navier-Stokes Problem
387
(11)
then
Since
sup((VulI < t>O
C1
where
depends on
m
h
,
i t i s c l e a r t h a t (11) i m p l i e s
and
K
only through t h e i r product
.
hK
Using
P r o p o s i t i o n 3 , one sees t h a t ( 1 3 ) i m p l i e s
with
C2
a l s o d e p e n d i n g on
h
and
K
only through t h e i r product
hK
.
Clearly
F u r t h e r , using ( 3 ) , i t is seen t h a t ( 1 4 ) i m p l i e s
with
C3
a g a i n d e p e n d i n g on
h
and
K
only through t h e i r product
hK
.
F i n a l l y , t a k i n g (11) and ( 1 6 ) t o g e t h e r , i t i s e v i d e n t t h a t
provided Let
h K and v
h
a r e s m a l l enough.
be t h e s o l u t i o n of (6) s a t i s f y i n g
s a t i s f i e s ( 9 ) and ( l o ) , p r o v i d e d
In view o f ( 1 5 ) , (lo), an e r r o r e s t i m a t e
hK
and
h
v(to)
=
h
R \(to)
.
Then
v
a r e s m a l l enough t o e n s u r e ( 1 7 ) .
( 1 6 ) and ( 1 4 ) , w e c a n a p p l y P r o p o s i t i o n 2 t o o b t a i n
John G . HEYWOOD
388
between C2
and
v
,
and
C3 , i . e . ,
l a r g e and a l l
h
with constants
K
d e p e n d i n g on
only through t h e i r product
.
and
o n l y through
K
K
Thus, f o r
sufficiently
s u f f i c i e n t l y s m a l l , t h e r e will h o l d
K e K T < i K , C3 5 K w h i l e a t t h e same t i m e b o t h
h
,
hK w i l l be s m a l l enough t o e n s u r e ( 1 7 ) .
and
2
Now ( 1 6 ) and (11) i m p l y (18) imply ( 1 2 ) .
hK
h
\\\(v-u)(to)\llh 5 2 h K
,
s o t h a t t o g e t h e r ( 9 ) and
This completes t h e proof of t h e v e l o c i t y e r r o r estimate ( 8 ) .
The p r e s s u r e e r r o r estimate (8) i s a r e l a t i v e l y e a s y c o n s e q u e n c e o f i t . Much o f t h e e x i s t i n g t h e o r y o f h y d r o d y n a m i c s t a b i l i t y r e s t s upon t h e " p r i n c i p l e of l i n e a r i z e d s t a b i l i t y " .
This is a general a s s e r t i o n t h a t i n
d e t e r m i n i n g t h e s t a b i l i t y of a s o l u t i o n
u
it sufficestoconsider the linear-
ized perturbation equation
-
-
w
(19)
- bW
t
+ u-Dw- + w-vu
= -Dq
,
i n place of the f u l l nonlinear perturbation equation ( 7 ) .
In the lollowing
t h e o r e m we g i v e a p r e c i s e s t a t e m e n t o f t h e p r i n c i p l e o f l i n e a r i z e d s t a b i l i t y a p p r o p r i a t e in t h e g e n e r a l c o n t e x t of t h e n o n s t a t i o n a r y p r o b l e m .
The , > r o o f
i s a d i r e c t and s i m p l e o n e , e n t i r e l y b y p a s s i n g s p e c t r a l m e t h o d s , a s i n d e e d one must i n t h e n o n s t a t i n a r y case.
Theorem 4 .
The s o l u t i o n
if there e x i s t numbers
u
problem (1)
~
a,A > 0
, such
& exponetially
t h a t every s o l u t i o n
s t a b l e i f and onLg
w
of t h e l i n e a r i z e d
Erturhation equation ( 1 9 ) s a t i s f i e s
m. L e t respectively,
J, =
w-w
, where
satisfying
;(t
w
and
w
are s o l u t i o n s o f (19) a n d ( 7 ) ,
) = w ( t ) = wo
.
S u b t r a c t i n g ( 7 ) from ( 1 9 ) g i v e s
Numerical Navier-Stokes Problem
f o r some s c a l a r f u n c t i o n
+
- A$
$It
q
.
u*v*
+
$.VU
M u l t i p l y i n g by
-
389
w.vw = -vq
,
and i n t e g r a t i n g ,
$
this leads t o
U s i n g G r o n w a l l ' s i n e q u a l i t y now y i e l d s
4
2
T > 0
f o r any f i x e d
.
Thus, i f
ce
cM T
2
sup [to,to+Tl
IIVwo/!
2
to+T
I I ~ ~ I It I
I I ~ W I I
d7
3
is s u f f i c i e n t l y s m a l l , depending on
T , Lemmas 2 a n d 1 i m p l y
Now s u p p o s e the c o n d i t i o n o f Theorem 4 h o l d s .
Choose
T
above s u c h t h a t
(20) i m p l i e s
11
Il;(to+T)
Then, a l s o , p r o v i d e d
IIVwo//
5 ~llwolI
is s u f f i c i e n t l y small, (21) i m p l i e s
!lWo+T)
II
1
5 ;llw,ll
Combining t h e s e g i v e s
s h o w i n g t h a t c o n d i t i o n ( i ) o f Theorem 2 i s s a t i s f i e d , i m p l y i n g t h e e x p o n e n t i a l s t a b i l i t y of
u
.
To show t h a t e x p o n e n t i a l s t a b i l i t y i m p l i e s l i n e a r i z e d s t a b i l i t y , w e a r g u e similarly, s t a r t i n g again with (21).
This completes t h e proof.
I n [l], w e a p p l i e d Theorem 4 t o show t h a t t h e s e t o f i n i t i a l v a l u e s f o r
u , w h i c h g i v e r i s e t o s o l u t i o n s t h a t are e x p o n e n t i a l l y s t a b l e a n d h a v e bounded
390
John G. HEYWOOD
D i r i c h l e t norms, i s open w i t h r e s p e c t t o t h e D i r i c h l e t norm.
All s o l u t i o n s
s t a r t i n g w i t h i n a common c o n n e c t i v i t y component of t h i s s e t converge t o g e t h e r a s t +
-.
We a l s o showed t h a t an e x p o n e n t i a l l y s t a b l e s o l u t i o n n e c e s s a r i l y t e n d s
t o a steady o r time p e r i o d i c motion, i f t h e f o r c e s and boundary c o n d i t i o n s a r e s t e a d y o r time p e r i o d i c .
These r e s u l t s combined w i t h Theorem 3 were shown t o
p r o v i d e a j u s t i f i c a t i o n of t i m e s t e p p i n g a s a means of c a l c u l a t i n g s t e a d y o r t i m e periodic solutions.
4.
Quasi-Exponential S t a b i l i t y Below,
w i l l r e p r e s e n t t h e a n g u l a r v a r i a b l e about an a x i s o f s y m e t r y
$
a
common t o both
f , i f t h e r e i s one.
and
For s i m p l i c i t y , we w i l l w r i t e
u = u ( $ , t ) , s u p p r e s s i n g i n o u r n o t a t i o n t h e u s u a l l y n o n t r i v i a l dependence u
of
on t h e o t h e r s p a t i a l v a r i a b l e s .
The symbol
w
w i l l a l s o denote an a n g l e
about t h e a x i s o f symmetry, thought of a s a r o t a t i o n .
If
f
possess a common a x i s of symmetry, i t w i l l be understood t h a t
R ,if
f o r any s
.
w = 0
D e f i n i t i o n 3.
Ve say u
& guasi-exponentiaZZy
such t h a t j-or e u e r x p e r t u r b a t i o n
6,T,B > 0
there exists a --___
do n o t
.
Further,
i s t i m e independent w e w i l l c o n s i d e r t i m e s h i f t s denoted by
i s n o t t i m e independent, i t w i l l be understood t h a t
f
If
€
R
and
time shift
s
w
s = 0
.
stable i f there are numbers
,
and a spatial r o t a t i o n
wo w
E
J &g
//woI/ < 6
satisfying
(22)
where __
v
i s t h e solution of the perturbed probZern ( 6 ) corresponding t o the
perturbation
w
,
;(x,t)
= u($+w,t+s)
.
A s i m p l e example of q u a s i - e x p o n e n t i a l s t a b i l i t y o c c u r s i n t h e Taylor
experiment.
A t c e r t a i n r o t a t i o n a l speeds of t h e c y l i n d e r s , t h e convection c e l l s
l o o s e r o t a t i o n a l symmetry, t a k i n g on a wavy appearance i n t h e a n g u l a r v a r i a b l e . C l e a r l y , i f t h e boundary v a l u e s and f o r c e s a r e r o t a t i o n a l l y symmetric, a small a n g u l a r s h i f t i n t h e p a t t e r n of waves w i l l c o n s t i t u t e an a d m i s s i b l e p e r t u r b a t i o n
39 1
Numerical Navier-Stokes Problem
w i t h no tendency t o decay.
However, t h e same r e a s o n i n g t h a t l e a d s one t o
b e l i e v e simple Taylor c e l l s a r e e x p o n e n t i a l l y s t a b l e l e a d s t o t h e c o n c l u s i o n t h a t wavy Taylor cells a r e q u a s i - e x p o n e n t i a l l y s t a b l e "modulo s p a t i a l r o t a t i o n s " , meaning t h a t t h e r e i s a f i x e d l e n g t h of t i m e between a s l i g h t l y d i s t u r b e d flow
v
T
d u r i n g which t h e d i f f e r e n c e
and a s l i g h t l y r o t a t e d image
=
u(++w,t)
of t h e o r i g i n a l undisturbed flow w i l l decay t o h a l f t h e s i z e of t h e i n i t i a l perturbation
w =v(to)-u(to)
, and f u r t h e r t h a t t h e r e q u i r e d r o t a t i o n
w
should be l e s s than a f i x e d c o n s t a n t
B
times t h e s i z e of t h e i n i t i a l p e r t u r -
I n t h i s case the t i m e s h i f t
s
i n D e f i n i t i o n 3 i s taken t o be z e r o .
bation.
A l t e r n a t i v e l y , i f t h e waves a r e p r e c e s s i n g about t h e a x i s of symmetry, and i f t h e f o r c e s and boundary v a l u e s a r e time independent, t h e flow can be considered a s q u a s i - e x p o n e n t i a l l y s t a b l e "modulo time s h i f t s " , meaning t h a t t h e r e e x i s t s a time shift
s
such t h a t t h e d i f f e r e n c e between
t o h a l f t h e s i z e of
w
i n time
T
.
v
and
u=
u ( + , t + s ) decays
An important example of a flow which i s
q u a s i - e x p o n e n t i a l l y s t a b l e modulo time s h i f t s , b u t n o t modulo r o t a t i o n s , i s provided by von-KQrmdn v o r t e x shedding behind a c y l i n d e r .
Small p e r t u r b a t i o n s
decay modulo s l i g h t s h i f t s i n t h e t i m e phase. D e f i n i t i o n 3 p e r m i t s c o n s i d e r a t i o n of q u a s i - e x p o n e n t i a l s t a b i l i t y modulo both t i m e s h i f t s and s p a t i a l r o t a t i o n s s i m u l t a n e o u s l y .
An example o c c u r s i n
t h e Taylor experiment, when a t c e r t a i n r o t a t i o n a l speeds of t h e c y l i n e r s wavy c e l l s a r e observed t o undergo a f u r t h e r time p e r i o d i c o s c i l l a t i o n , odd and even numbered c e l l s a l t e r n a t e l y expanding and c o n t r a c t i n g .
Though t h e s e c e l l s a r e
sometimes r e f e r r e d t o as doubly t i m e p e r i o d i c , i t i s c l e a r t h a t t h e second time p e r i o d i c i t y i s p o s s i b l e only because t h e f i r s t one i s e q u i v a l e n t t o a s p a t i a l periodicity. I n [l] w e proved a r e s u l t concerning t h e d i s c r e t e approximation of q u a s i e x p o n e n t i a l l y s t a b l e s o l u t i o n s , analogous t o Theorem 3 .
I t s conclusion d i f f e r s
from t h a t of Theorem 3 i n t h a t i t provides e r r o r e s t i m a t e s modulo r o t a t i o n s and time s h i f t s .
More p r e c i s e l y , i t a s s e r t s t h e e x i s t e n c e of time dependent
John G . HEYWOOD
392 rotations ho
and
,
and t i m e s h i f t s
uh(t)
0 < h
such t h a t f o r
sh(t) h
5
, in
addition t o the constants
,
t > 0
and
K
there holds
2 ~ ~ ~ ( ~ - ~ h5 )h ( Kt I) ~ ~ ~ h
I / ( p - p h ) ( t ) l l ,. L'/Nh wh ere
L($,t)
=
Mo reo v e r , u h ( o )
u ( $ + wh(t ) , t + sh t ) ) =
,
5
and
hKmax(l,t-1/2)
,
,
p ( $ , t ) = p($+w,(t)
t+sh(t))
.
s h ( o ) = 0 , and t h e i r t i m e d e r i v a t i v e s s a t i s f y
I
m
p
Thus t h 2 rates o f a n g u l a r p r e c e s s an and of d r i f t i n t h e t i m e p h a s e , of t h e
d i s c r e t e s o l u t i o n r e l a t i v e t o t h e c o n t i n u o u s s o l u t i o n , a r e of o r d e r
h'
.
s t a b i l i t y h a s b e e n d e v e l o p e d i n [l]
The t h e o r y of q u a s i - e x p o n e n t i a l
s i m i l a r l y to t h a t e x p o n e n t i a l s t a b i l i t y , w i t h s i m i l a r c o n s e q u e n c e s f o r d i s c r e t e approximations.
We w i l l o n l y s t a t e h e r e t h e c o r r e s p o n d i n g p r i n c i p l e of l i n e a r -
ized stability.
To u n d e r s t a n d t h e m o d i f i c a t i o n ne e de d i n Theorem 4 , n o t e t h a t
if
f
i s independent of t i m e , a n d / o r
R
and
f
p o s s e s s a common a x i s of
r o t a t i o n a l symmetry w i t h t h e c o r r e s p o n d i n g a n g u l a r v a r i a b l e derivatives
u
t
and/or
u
$
$
,
t h e n the
a re n e c e s s a r i l y s o l u t i o n s of t h e l i n e a r i z e d p e r t u r -
bation equation (19).
Theorem 5.
The soZution
problem ( 1 )
u
and only if t h e r e e x i s t numbers
cr,A,B > 0
& quasi-exponentiaZZy , such
s t a b l e if
t h a t every s o l u t i o n
;(t)
of t h e l i n e a r i z e d perturbation equation (19) s a t i s f i e s
@ t 2 t
+
1
, where
Nonzero _ _ _ _muZtipZiers _
a
u
&
p
p
are scaZar m u l t i p l i e r s s a t i s f y i n g
are required in
( 2 4 ) if and only
if nonzero
393
Numerical Navier-Stokes Problem __ time s h i f t s 5.
s
& nuntriuial
rotations
, respectively,
w
required
&
(23).
C o n t r a c t i v e S t a b i l i t y t o a Tolerance and Long Term A P o s t e r i o r i Error Estimates We t u r n now t o t h e q u e s t i o n of whether t h e "global e x i s t e n c e " of a smooth
s t a b l e s o l u t i o n of problem (1) can be v e r i f i e d by means o f a numerical experiment.
There i s a known argument f o r bounding a s o l u t i o n ' s D i r i c h l e t norm
(and thus o b t a i n i n g i t s f u l l r e g u l a r i t y ) " l o c a l l y " v i a a numerical experiment combined with an
d
posteriori e r r o r estimate.
I t goes roughly a s f o l l o w s .
Suppose t h e D i r i c h l e t norm of t h e d i s c r e t e s o l u t i o n , f o r a given mesh s i z e
i s found t o remain l e s s than some number M > Nh M
,
Nh
h
,
Choosing a second number
.
t h e D i r i c h l e t norm of t h e smooth s o l u t i o n c e r t a i n l y remains l e s s than
on some unknown i n t e r v a l
[O,th]
.
Using t h e l o c a l e r r o r e s t i m a t e (Proposi-
t i o n 2 ) which h o l d s on t h e b a s i s of t h e assumed bound
,
M
one then o b t a i n s an
e x p l i c i t e s t i m a t e ( e x p o n e n t i a l i n time) f o r t h e s o l u t i o n ' s D i r i c h l e t norm on
.
[O,t,] th
,
Equating t h e r i g h t s i d e o f t h i s e s t i m a t e w i t h
o r more p r e c i s e l y , a lower bound f o r
which
M
numbers
th
'
does indeed bound t h e D i r i c h l e t norm. remain bounded as
Nh
h + 0
,
i.e.,
M
one may s o l v e f o r
an i n t e r v a l of t i m e d u r i n g
A t b e s t , i f t h e computed
one f i n d s t h a t
of t h e e x p o n e n t i a l growth of t h e l o c a l e r r o r e s t i m a t e .
t
h
- - 1 o g h , because
I n o t h e r words, t o v e r i f y
e x i s t e n c e t h i s way on an i n t e r v a l [O,T] r e q u i r e s a numerical experiment w i t h mesh s i z e
h
-
exp(-T)
-
The p o i n t of Theorem 6 below i s t o demonstrate t h a t i n v e r i f y i n g e x i s t e n c e over t i m e i n t e r v a l s of any l e n g t h , i t s u f f i c e s t o work w i t h a s i n g l e s u f f i c i e n t l y small c h o i c e of t h e mesh s i z e , provided t h e d i s c r e t e s o l u t i o n i s found t o be
s t a b l e a s w e l l a s of bounded D i r i c h l e t norm. This r a i s e s t h e q u e s t i o n of whether i t i s p o s s i b l e t o v e r i f y numerically t h e s t a b i l i t y of a d i s c r e t e s o l u t i o n .
I t c e r t a i n l y i s n o t i f one has i n mind
t h e u s u a l n o t i o n s of s t a b i l i t y , which s e t a c o n d i t i o n t o be s a t i s f i e d by a l l p e r t u r b a t i o n s , no m a t t e r how s m a l l .
For t h i s reason we i n t r o d u c e , f o r u s e
394
John G . HEYWOOD
a s a h y p o t h e s i s i n Theorem 6 , a n o t h e r n o t i o n o f s t a b i l i t y which w e c a l l I n Theorem 7 i t i s shown t h a t t h e
“contractive s t a b i l i t y t o a tolerance”.
q u e s t i o n of whether a d i s c r e t e s o l u t i o n p o s s e s s e s t h i s type of s t a b i l i t y can be answered through a f i x e d , f i n i t e amount of computation p e r u n i t of time.
The
q u e s t i o n of whether t h e d i s c r e t e approximations of an e x p o n e n t i a l l y s t a b l e s o l u t i o n i n h e r i t t h e p r o p e r t y of b e i n g c o n t r a c t i v e l y s t a b l e t o a t o l e r a n c e i s answered a f f i r m a t i v e l y i n Theorem 8.
I t i s shown, moreover, t h a t t h e s t a b i l i t y
parameters of t h e d i s c r e t e s o l u t i o n are bounded uniformly i n
h
as
h
.+
0 ,
s o t h a t t h e hypotheses of Theorem 6 are n e c e s s a r i l y s a t i s f i e d f o r all s u f f i c i e n t l y s m a l l v a l u e s of
h
.
Together, Theorems 6 , 7 and 8 imply t h a t t h e e x i s t e n c e
o f a s t a b l e smooth s o l u t i o n can be v e r i f i e d ( a t l e a s t i n p r i n c i p l e ) through a
f i x e d , f i n i t e amount of computation p e r u n i t of t i m e . i n [l].
The p r o o f s a r e s u p p l i e d
Below, f o r s i m p l i c i t y , we d e f i n e c o n t r a c t i v e s t a b i l i t y t o a t o l e r a n c e
r e l a t i v e t o t h e i n f i n i t e time i n t e r v a l
5
t
0, v
2
0, K > 0
represent the binding energy, viscosity and
the rate of chemical reaction respectively, 11 is a lumped variable representing
409
410
YiNc
Lung and TENZhen-Hum
density, velocity and temperature, z
is the fraction of unburht gas.
Majda 131
has investigated the travelling wave solutions of (1) and explained some interesting phenomena from it, such as strong and weak detonation waves. The properties of (1)when
v = +O
and K =
+m
are o f most interest because
the mathematical shock waves and mathematical detonation waves are involved in the solutions at this case. We will prove the global existence of the weak solutions f o r the initial value problems under some hypotheses. The relationship between system (1) and the reacting fluid dynamic system is just the same as that between Burgers' equation and the fluid dynamic system. But system (1) is much more complicated than Burgers' equation, because first of all it is a system, not a sinele equation, secondly,
because many properties of Burgers' equation, for
example, the order principle, are violated here, another example is that there is no "overshot" of shock waves in the solutions of Burgeis' equation, while it is just normal w i t h discontinuous solutions of (1). Many difficulties in analysis arise from this. We will give some hypotheses and two definitions of weak solutions: Problem
P and Problem Q, discuss the strong discontinuous curve and the Riemann Problem in the first section, the formulation of Problem Q is stronger than that of Problem P since it determines the state at critical point
u = 0. We will prove the
global existence of Problem P at the second section if, roughly speaking, the initial values are functions with bounded variation. Under an additional hypothesis on the points where the initial value u,(x)
assumes the value
(Hypothesis A), we will prove the global existence of Problem Q at the third section. 51. The definitions of solutions. We always assume that the function f(u) is sufficiently smooth and f" > 0
.
Function
4
is defined as
4(u)
=
{
0,
u
1,
u > 0,
0,
f' > 0 ,
Hyperbolic Model of Combustion where
is the "ignition temperature", which is a critical point, we will
u = 0
assume that
41 1
$(0) = 1 at the following Problem Q. Clearly
5
z 5 1, according
to its physical background. Let
v
-+
+0, K *
in system (l), we obtain a formally classical formula-
+a,
tion as
a
a ax
(u + q z ) + - f(u) = 0,
z = 0,
as
u > 0,
az _
as
u < 0.
(3)
-
at - O,
The Rankine-Hugoniot condition is also obtained as
(4)
[ u + q z l o = Lfl.
where [ ] denotes the jump of function, 5 is the slope of the discontinuity curve. If the limit of curve are denoted by
u, z
-
u
,z
from the left and right sides of the discontinuous
-
and
+
u
+ ,z
respectively, then it is easy to
classify the discontinuous curves into five classes:
-
+
a) shock waves (abbr. S), either u , u
-
+
< 0 or u , u
b) strong detonation waves (abbr. SD), u- > 0 , u+ < 0, and c) weak detonation waves (abbr. WD), u- > 0 , u+ < 0, and
-
z =
> 0, and
+
z
,
f'(u-) > 0,
f'(u-)
0, u+ < 0, and
f'(u-)
= o,
e) contact discontinuities (abbr. C ) , u
+
-
= u
,
+
z
-
# z
, where -
Some other cases are possible, for instance the case when
u
U = 0.
< 0 , u+ >
0,
but we assume that the Lax condition of stability
hT1 -> o is satisfied, where
1. x;, h (u) 1
for
f
i = 1
0, A2(u) = f'(u),
A f ( u ( x + 0, t)), then neither the case
or
xi =
2,
xi(U(X
-
0,
t)),
=
u- < 0 , u+ > 0, nor weak detonation wave
are admissible. We will assume that only cases a,) b) d) e) are admissible in the following.
YING Lung and TENZhen-Huan
412
There are some other critical cases, for instance u will assume in the following that u- > 0 or ut > 0 to u-
2
z = 0 when
or u+
+
= 0
-
or u
= 0. We
u = 0, hence we may change
at the above inequalities.
For the convenience of following discussion, two auxiliary functions are defined. Function u* = g ( u , z )
Lemma 1.
u*
is defined by
exists uniquely and
> 0,
2
> 0.
Proof. Set
then (5) is equivalent to
Y(u*) = 0, u*
2
u.
?'(u*)
It is easy to verify
> 0
and
But = 0.
v ( t m )
But
aU
=
+m,
z 2 0, hence u*
> 0 and
2
2
-
such that
y(u*)
u.
> 0 can be verified from ( 5 ) directly.
By (5) it is easy to see that
corresponds to u
u + qz
therefore there exists a unique u*
+
+
+
SD corresponds to u- > g(u , z )
and
CJ
$(O) =
0,
+
= g(u , z ).
The second auxiliary function is w = $ ( u ) , satisfying
w =
tu,
It is easy to see that $
'u
0.
is continuous, monotonous and one-to-one,
$'(u) 1.0.
Lemma 2. If uo < 0, z1 > z2 > 0, g ( u o . z2) 2 0, then
Hyperbolic Model of Combustion
413
(7) If u1 < u2 < 0 , zo = 0 , p(ul,
Proof.
On the
2
2,)
0 , then
(u, f) plane, the straight lines
are the tangent lines of curve
f = f(u)
these two lines with horizontal line
by ( 5 ) .
The intersection points or'
f = f(0) are
respectively, hence
w
by
i'" > 0. From (5)
(6) we
1
-
w2 < q(zl -
2,)
know w1 = $ ( g ( u o , zl)), w2 = $(g(uO, z2)), there-
fore (7) is proved. The proof of inequality (8) is similar. We consider the initial value problem of ( 2 ) ( 3 ) with initial values
where
zo
satisfies 0
5 z0 -
u r , b u t
b)
are a
and a
C
c)
C
as t h e s o l u t i o n of e q u a t i o n
z0 ( X I , t h e n t h e s o l u t i o n of t h i s case is
i n the solution.
uI1 < 0 .
We can c o n s t r u c t t h e s o l u t i o n as c a s e a ) .
There
i n t h e solution.
uI1 > g ( u r , z r ) .
SD, it d e g e n e r a t e s t o a
uI1 > ur, uI1 1. 0 , b u t
There i s a
u(x, t )
z(x, t ) E
Set
uI1 > u r , uI1 1. 0 , and
There is a d)
S
T h e r e a r e four c a s e s :
are constants.
ue
S
when
5 g(ur,
zr).
Let
z = 0. r
Let
CJ.
T h e r e f o r e , t h e Riemann p r o b l e m i s always s o l v a b l e .
But it s h o u l d b e n o t i c e d
t h a t even t h e c o n d i t i o n o f s t a b i l i t y i s s a t i s f i e d , t h e s o l u t i o n s a r e s t i l l n o t unique.
F o r example, when
u (x) E uo < 0 , z 0 ( x ) f z
besides t h e t r i v i a l solution t i o n as:
u Euo
and
> 0 , g(uo,
2,))
0,
z 1 zo, we may a l s o c o n s t r u c t a s o l u -
415
this solution corresponds to the case when one fires a match in a space filled with combustible gas and oxygen. We conjecture that the solutions obtained in the following are not those solutions of "catastrophe".
For the general initial value problem, u,(x),
zo(x)
are assumed to be
bounded measurable functions. Two formulations of weak solutions are given.
Problem P. To f i n d bounded measurable functions u(x, t), z(x, t) defined in t > 0
such that for all
t
and
x,
exists,and for any smooth function (p(x, t) with compact support on
holds, moreover, for any non-negative smooth function
'9'". t)
t
2
0,
with compact
support on t L 0 ,
holds, and finally such that with
we have
z(x, t) =
Problem Q.
{
if
O' zo(x), if
v(x, t) > 0 , v(x, t) < 0.
To find bounded measurable functions u(x, t), z(x, t) defined in
416
YING
t > 0
s a t i s f y i n g (11) ( 1 2 ) and
where
v ( x , t)
Lung and TENZhen-Huan
i s d e f i n e d by (lb).
(16)
The formulation of Problem Q i s s t r o n g e r t h a n t h a t of Problem P , because i m p l i e s ( 1 3 ) and determines t h e s t a t e as
52.
u = 0.
The e x i s t e n c e of t h e s o l u t i o n s o f Problem P. F i r s t of a l l , l e t us c o n s i d e r a c l a s s of s p e c i a l i n i t i a l v a l u e s and d i s c u s s
t h e p r o p e r t i e s of t h e s o l u t i o n s f o r t h e s e s p e c i a l i n i t i a l value problems. Lemma 3.
If
(-m,
= constant, u ( x ) 0
c o n s i s t s of a f i n i t e number o f i n t e r v a l s , and
+m)
zo(x)
does n o t d e c r e a s e on each of them, t h e n t h e s o l u t i o n of Problem
Q exists.
Proof.
N
Suppose t h e r e a r e
When
When
u(x, t )
N = 1, a s o l u t i o n
t.
i s c o n s t r u c t e d as t h e s o l u t i o n o f e q u a t i o n
u o ( x ) , u(x, t )
(10)w i t h i n i t i a l v a l u e f o r each
intervals.
I t is s u f f i c i e n t t o s e t
does n o t d e c r e a s e as a f u n c t i o n o f
z(x, t ) f z (x). 0
N = 2 , we may suppose t h e two i n t e r v a l s a r e
out losing generality.
Let
u
r
= u (+O) O
c :;:
zo(x) =
x
x
50
and
x > 0
with-
uk = uo(-O),
and
x > 0,
x
5
0.
There a r e f o u r c a s e s ( c o n s u l t with t h e Riemann problem):
> 0
a)
uR 5 ur, c o n s t r u c t
b)
uy,> u r , b u t
and
x < 0
u
uk < 0 .
as t h e c a s e Construct
z ( x , t ) 5 zO(x).
N = 1 and s e t
u(x, t ) with t h e i n i t i a l v a l u e on
separately j u s t l i k e t h e case
N = 1, t h e n c o n s t r u c t a discon-
t i n u i t y through t h e o r i g i n d e f i n e d by dx _ dt
f(u(x - 0 , t ) ) - f ( u ( X + 0 , t ) ) u ( x - 0 , t ) - u(x + 0 , t )
.
x
Hyperbolic Model of Combustion u(x
+
u(x - 0, t )
0 , t ) i n c r e a s e s and
always unequal. c)
z(x, t ) 5 z (x)
We h a v e
' u r , ue -> 0 ,
UQ
d e c r e a s e s as
increases, but they a r e
i n t h i s case.
uR > g ( u r , z r ) .
and
t
417
u(x, t ) separately
Construct
l i k e b ) , then c o n s t r u c t a d i s c o n t i n u i t y d e f i n e d by
_ dx - f ( u ( x - 0 , t ) ) - f ( u ( x + 0, t ) ) a t u ( x - 0 , t ) - u ( x + 0 , t ) - 9zr
=
t i n u o u s v a r i e s from
d)
u Q > u r , uQ
S t e p 1. x
5
S t e p 3.
N = 1 we o b t a i n t h e s o l u t i o n on
ur(x, t )
i s c o n t i n u o u s on
on t h e s e c t o r
Q(T),
and
uQ(x, t )
x
2
f'(ur)t
respectively.
g(ur, zr)
2 uQ x
2
t > 0 , we o b t a i n a smooth s o l u t i o n
and t h e s l o p e of
4.
x(t)
x
increases, t h e curve
f'(uk)t.
Construct a solution
u(x, t ) = ( f ' )
on
d), i . e . t h e d i s c o n -
up.5 g ( u r , z r ) .
0, but
always l i e s i n r e g io n
i n region
u(x - 0, t )
S o l v e t h e i n i t i a l v a l u e problem of o r d i n a r y d i f f e r e n t i a l e q u a t i o n :
Because
Step
vary as t h e previous, i f
CJ.
Using t h e s o l u t i o n o f
ur(x, t )
Since
=x(t)
2
to
f ' ( u R ) t , d e n o t e them by
Step 2.
= x(t).
SD
0, t )
to, t h e n it becomes t h e c a s e
a t some
g ( u ( x + 0, t o ) , z r )
and
-
increases, u ( x + 0, t ) , u ( x
t
As
.
f'(uR)t < x
5
-1 x ($
z = 0
f ' ( g ( u r , zr))t.
Construct c h a r a c t e r i s t i c s
f'(g(u,,
zr))t < x < x ( t ) , then define
it i s e a s y t o p r o v p
Q(T)
c o v e r t h e whole r e g i o n and
(u, z )
is a
x
YING Lung and TENZhen-Huan
418 is a
solution, x = x ( t )
CJ.
2
For t h e g e n e r a l c a s e when N
Remark.
( u ( x , t ) , z ( x , t ) ) i s t h e s o l u t i o n o b t a i n e d b y Lemma 3 , t h e n t h r o u g h
If
(xo, t ) 0
any p o i n t
there is a characteristic
*= dt u ( x , t) 5 u ( x o , t 0 )
Identity
x-axis, o r a
0'
holds on t h i s c h a r a c t e r i s t i c . if
If
u ( x o , t o )5 0 ,
u ( x , t ) > 0 , it i n t e r s e c t s e i t h e r t h e
CJ.
3 satisfies
If t h e s o l u t i o n by Lemma
( x , t ) , t h e n f o r any
at a point
t < t
f'(u(x, t ) ) ,
this l i n e must i n t e r s e c t t h e x - a x i s ,
Lemma 4 .
2 , it i s e a s y t o p r o v e by i n d u c t i o n .
5
0
{zn(x, t ) }
L1(-M, M)), we s t i l l d e n o t e t h e s e s u b s e q u e n c e s by
space
Let
w(x, t )
and
u ( x , t ) = $-'(w(x,
z(x, t )
has a s o l u t i o n
t)).
and
T > 0 , t h e correspond-
converge i n space
{$
o
un)
and
C([O,
TI;
{zn} f o r con-
and
We change t h e v a l u e of
w(x, t )
t , w ( x , t) and
l e f t c o n t i n u o u s and t h e v a r i a t i o n o f them i s bounded, t h e n u ( x , t )
url(x, t )
We
t h e l i m i t f u n c t i o n s . They b e l o n g t o
on a n u l l measure s e t s u c h t h a t f o r e v e r y
tinuous too.
z,,(x)
z n ( x , t ) by Lemma 3 , and t h e e s t i m a t i o n i n Lemmas 5-10 h o l d s .
and
venience.
converges t o
and
z(x, t )
are
i s l e f t con-
z n ( x . t ) a r e a l s o l e f t c o n t i n u o u s by t h e P r o o f o f
Lemma 3.
Now we p r o v e t h a t
(u(x, t ) , z ( x , t ) )
C l e a r l y it s a t i s f i e s ( 1 2 ) and ( 1 3 ) b e c a u s e
We h a v e t o v e r i f y ( 1 5 ) . L e t
i s t h e s o l u t i o n of Problem P .
(un(x, t ) , zn(x, t ) ) are solutions.
425
Hyperbolic Model of Combustion t > 0, we take a subsequence of
For any and
zn(x, t)
converge to w
and
z
{(un, zn)}
again such that
almost everywhere as the functions of
{(un, z n ) } .
independent variable x, the subsequence is still denoted by also converges almost everywhere by the continuity of {(un, z
where
)I
( u , z)
does not converge to
x
Suppose that
-1
.
J,
is denoted by
u ( 5 , tl) 2
such that w(x, tl)
in
5
where, if un(5, t,)
Ll
-
[x
-
h,
XI.
But
E
J,(un(x, t ) ) 1
converges to
vn(5, t) > 0, z
5
(5,
t) = 0 by (15). Let
Therefore z(c, t) = 0
N1.
+a,
If not, then
> 0 and every
E
a
is
>
-.
-2
2
T
+
T
{T~}.
n.
-rn < t, such that un(x, Tn)
vn(x, t)
That is, for
2
-E.
If
T
We take a subsequence, still denoted by
as
n
4.
We take
+ m.
If T > 0 , then for sufficiently large n, T
We have
for all
55
x
by Lemma
15 - x /
- 2 ~uniformly with respect to n. { $ uniformly with respect to
almost every where.
Hence
we get
z.
for all sufficiently large
n, there exists a
accumulation point of
{ T ~ I ,such that T
vn(x, t)
n,
holds almost everywhere on
z(x, t) = 0 by the left continuity of
Thus
n
If v(x, t) < 0, we prove that there is a subsequence such that < 0.
h > 0,
> 0 and
is a point where it converges, then for sufficiently large
> 0, hence
h, x].
5E
for
such that
-
norm, we take a subsequence such that it converges almost every-
z ( 5 , t) = 0 only if
[x
E
N1’
< t
u(x, tl) > 0 by (14). By the left continuity, there are
un
The set of points
If v(x, t) > 0, there exists
Nl.
J,(un(x,t))
v(x, t)
un}
TE/2C,
then we get
converges to
w
in
uni5, Tn)
L1 norm
t, hence
By the left continuity
-2~, but
E
is arbitrary, hence
V(X,
t) > 0, which contradicts
YINC Lung and TENZhen-Huan
426 v(x, t) < 0. If
T =
0, then we may construct a characteristic or a curve con-
CJ, which intersects the x-axis at
sisting of piecewise characteristics and
tn
E [x
> -E E
-
f'(u,)Tn,
X I , and
uo(x)
2 0, so
v(x, t)
Therefore, there is a subsequence such that = z(")(x).
Because
x
+
as
n
+
a,
we get
u 0(x) and the uniform convergence of
by the left continuity of
is arbitrary, hence
5,
u(n)(~ni 2 - E . 0
En*
uo(x) u("), but 0
0, it is also a contradiction.
vn(x, t) < 0, hence
zn(x, t)
N1,
x
z(x, t) = lim z (x, t) = zO(x). nTherefore (15) holds for almost every x.
But
almost everywhere. We can change the value of
t
is arbitrary, thus (15) holds
z(x, t) on a null set
such that (15) holds everywhere.
53.
The existence of the solutions of Problem Q. First of all, let us introduce a definition and a hypothesis.
Definition. It is
u (x) assumes the value 0
said that
a
at point
x, if one
of the following holds: u (x 0
-
0 ) = a;
u (x + 0 ) = a;
u (x + 0 ) > u (x 0 0
Lemma 11. Suppose if
u(xo, t ) < 0 0 -
- o),
a € (uo(x - o ) , uo(x + 0)).
(u(x, t), z(x, t)) at a point
is the solution obtained by Theorem 1,
(xO, t ) , then the straight line, which is called 0
the characteristic,
has the following two properties:
a) u (x) assumes the value u ( x o , t ) 0
at point
x = x0
-
f'(u(xo, to))to
which is the intersection of this characteristic and x-axis; b)
if u(xo, to) # u(x13 t,) and
)z0, then the downward
u(xl, t 1
Hyperbolic Model of Combustion c h a r a c t e r i s t i c s through p o i n t s
421
( x ~ t, 1)
( x o , t o ) and
do n o t i n t e r s e c t on
t
> 0.
For any
Proof.
h > 0 , E > 0 , t h e r e i s an i n t e g e r
n
En E
and
[x,
-
h , x,],
such that
b e c a u s e i f n o t , t h e n t h e r e were
h > 0,
E
> 0 , such t h a t
for sufficiently large
n , wliicn c o n t r a d i c t s t h e
t h e l e f t c o n t i n u i t y of
u.
L1 c o n v e r g e n c e of
A c c o r d i n g t o t h e above p r o p e r t y , t h e r e e x i s t s a s u b s e q u e n c e o f denoted by
{ u n l , and a s e r i e s o f p o i n t s
We c o n s t r u c t a downward c h a r a c t e r i s t i c o f
cri
u
+
x
as
n
(En, t ) , i f
< 0 , it i n t e r s e c t s t h e x - a x i s , t h e i n t e r s e c t i o n p o i n t i s - f'(un(Cn, tO))tO and u
(Cn, t 0 )
E [C, uo(x)
-
and
{unl, still
xn =
un(Cn, t o )
Cn at
xn ' i f
> 0 , we c a n c o n s t r u c t a p i e c e w i s e c h a r a c t e r i s t i c and
CJ
c u r v e as i n
assumes t h e v a l u e
x
u
u n ( C n , to)
u(")(x)
Lemma 9 which i n t e r s e c t s t h e x - a x i s , u ( " ) ( x ) point
a
such t h a t
+ m,
through
$
assumes a v a l u e a t t h e i n t e r s e c t i o n
which i s n o n n e g a t i v e and n o t g r e a t e r t h a n
f'(un(Cn, t O ) ) t O En, assumes t h e v a l u e
- f'(o)t,I.
u(xO, t )
Let
n
+
m,
u n ( c n , t o ) ,hence x
+
at t h i s p o i n t because
u n i f o r m l y and t h e l e f t and r i g h t l i m i t o f
uo(x)
xo
-
f'(u(x,,
{uAn'l
x to))to.
converges
e x i s t s at each p o i n t , t h u s a )
i s proved A s f o r b ) , we can t a k e a s u b s e q u e n c e
{un}
and t w o s e r i e s o f p o i n t s
l e a s t one o f them i s n e g a t i v e , t h e r e f o r e t h e c h a r a c t e r i s t i c s o r p i e c e w i s e
{En]
YINGLung and TENZhen-Hum
428 characteristic and
(Ln,
curves through points
(CA, tl)
to) and
do not
t > 0. These two families of curves converge to their limit posi-
intersect on tions as n
CJ
-+a,
which do not intersect on t > 0 either.
We make the following hypothesis on the initial values: Hypothesis A.
If u0( x ) assumes the value
[b, c] 3 x
interval
such that
2
u,(x)
0 at
0 on
tt
point
x, then there is an
( b , c).
Lemma 12. F or the solution obtained by Theorem 1, if there are t > to > 0
__.
x E
(-a,
+m),
of those T
such that v(x, t)
=
0, z(x, t) > 0 , and
to
and
is the supremum
satisfying
u(x, to) = 0.
then
Proof. Because
to
is a supremum, there are only two possibilities:
a) there is a series T
-f
to, such that u(x, Tn)
-f
0;
b) u(x, to) = 0. If possibility a) holds, and if
T
decreases montonously, u(x, Tn ) -< 0
v ( x , t) = 0. We construct a downward characteristic of u (x,
7n),
= x
-
which intersects the x-axis at
f'(0)t
as n
+ m.
5'.
= x
-
f'(u(x, T ~ ) ) ? ~ . x n
-+
xO
( 5 , to) to the x-axis, let the intersection point
( 5 , to) is on the left side of characteristic through (x, Tn) for
sufficiently large n, by Lemma 11, 5'
5
xn.
Let
n
+
m,
the s l o p e f'(U(5, to)) =
5 5-5'>-
that is
through the point
If u(5, to) 5 0 for some 6 < x, then a characteristic
can be constructed from point be
x
because
xo
'
we get
5' 5 xo, hence
429
Hyperbolic Model of Combustion u ( 6 , to)
The above inequality still holds if
20.
5:
Let
-f
x, u
is left contin-
uous, hence
i.e. u(x, to)
2 0.
u(x, t ) 0
But
characteristic through point
2 xo
as n
-+
=
-
x
f'(0)to.
(x, t0 )
But we have
5
0, we can construct a
and intersect the x-axis et point
5
x'
xn by Lemma 11 for any
n.
XI,
x n
+
x
O
u(x, t0 ) = 0.
therefore x' = xo, we also get
m,
u(x, t ) = 0. 0
0, hence
increases monotonously, because u(x,t ) 0
If Tn
x'
5
Therefore we get u ( x , t0 ) = 0 at any case. We know by Lemmas 11 and 12 that u o ( x ) assumes the value
0 at point
xO'
Moreover, we can prove
Lemma 13. Under the conditions of Lemma 12, if Hypothesis A holds and U(")(X) 0 >
uo(x), lim z (x, t) = z(x, t), x, = x n-
> 0, such that
point
f'(0)tO, then there is a constant h
5 E (xo, xo
0 for every
u,(6)
-
5 in (x, - 6, xo), such that
u,(t)
+
h), and there is always a
< 0 for any
6 > 0.
Proof. We prove it by contradiction. If the conclusion were false, then there
6 > 0 , such that u o ( 5 )
would be a
sufficiently small, such that T
E [to, t
t
6/f'(O)],
5
Since u(x,
7)
Lemma 11, 5
5 xo. If
>
0.
If
5
0
for
< 0
value
such t h a t
f o r any
at p o i n t u 0 ( 5 ) -> 0
This i s a contradiction.
We have proved t h a t t h e r e i s always a p o i n t
u,(t)
6>
0.
FIGURE 1
5
in
(xo - 6, xo), s u c h t h a t
By H y p o t h e s i s A a n d t h e f a c t t h a t
u,(x)
assumes t h e
xo, t h e o n l y p o s s i b i l i t y i s t h a t t h e r e i s a c o n s t a n t for every
5 E (xo, xo + h ) .
h > 0,
Hyperbolic Model of Combustion
43 1
lim zn(x, t) = ‘ z ( x , t) at the above lemma can be n* relaxed to the effect that this limit holds only for a subsequence.
Remark.
Clearly the condition
By the convergence of sequence
{zn(x, t)}, such that it converges
a subsequence from it again, still denoted by to
almost everywhere on
z(x, t)
such that any subsequence of It is obvious that
Lemma 14. x C
1. 0.
{zn(x, t)}
and
We define N1
as a set of
(x, t)
z(x, t).
does not converge to
is a null measure set.
If Hypothesis A holds and
+m)
(-m,
N1
t
proved in Theorem 1, we can take
{zn(x, t)}
s > so > 0 , y
u(”)(x) > u O - 0
(-m,
(XI,
there are
s u c h that
+m)
t, to, x
(x, t)
satisfy the conditions of Lemma 12 respectively, and
t > to > 0, and
s, so, y
N1, (y, s)
N1.
Set
-
xo = x
Yo = y
f’(0)tO’
-
f’(0)so
xo # y o , if x f Y.
then
Proof.
x < y. Take a subsequence of
We may assume that
{zn}
converges to
Thus
uo(x) < 0.
z at point
(x, t).
We obtain
{(u,,
zn)}
zo(x) > 0 from
such that z(x, t) > 0.
If u (x + 0) > 0, then there is a constant 6 > 0, such that uo(()
0 for
( E (x, x + 6), hence
u(”)(() 0
L
0.
If u (x + 0) < 0, by the same reason, there is a constant 0 u O ( c ) < 0 for
5 E (x, x + 61, hence uin)(()
If u (x + 0 ) = 0, then uo 0
< 0.
assumes the value
< 0, by Hypothesis A, there is also a
6 > 0 , such that
0 at point
x, but u,(x)
2
6 > 0, such that uin)([)
0 for
5
E (x. x + 6). It is known that and that is
a
x
((,
T).
Therefore
432
Y I N G Lung and TENZhen-Huan
( 5 , T)
through any point
in
fi we can always construct a downward character-
istic of u . If it intersects line
6 = x,
11
tl.
& [ 0 , t o ) ,t h e n
to
t
t
which c o r r e s p o n d s t o a n
tl.
Set
NX.
u(x, t )
and
N2 = N
X
[0, +-),
u(x, t ) , z(x, t ) z(x, t )
of
also s a t i s f y
Taking an a r b i t r a r y
+@), we
x E
satisfying
and
tl
s a t i s f y i n g t h e above c o n d i t i o n .
If t o i s t h e supremum o f t h o s e
5
x
(x, t ) p l a n e .
v(x, t ) = 0.
i n t h e case of
x
and o b t a i n t h e s o l u t i o n
Problem P by Theorem 1. We p r o v e t h a t e q u a t i o n (16)
xO w h i c h s a t i s f y t h e c o n c l u s i o n
Hence t h e r e a r e a t most c o u n t a b l y
Denote t h e s e t o f them by
i s a n u l l measure set, o n t h e
u, z & ‘ BV.
By Lemma 1 3 , x
f i e s t h e c o n c l u s i o n of Lemma 1 3 , h e n c e
T
satisfying
c o r r e s p o n d s t o an xo
( x , t ) E N2.
We may
v(x,
T )
< 0,
which satis-
This i s a contradiction.
T h e r e f o r e t h e s e t of p o i n t s which s a t i s f y ( 1 9 ) i s o f m e a s u r e z e r o , which i s d e n o t e d by
Nlu N;,
%. UN3
i s a n u l l m e a s u r e s e t , we d e f i n e t h e v a l u e of
z(x, t )
Y I N CLung and TEN Zhen-Huan
434
according to (16) on this set, then
(16) is satisfied everywhere. The obtained
u(x, t), z ( x , t) is the solution of Problem Q.
References [I] Williams, F.A., Combustion Theory, Addison-Wesley, Reading, Mass., 1965. [PI
Courant, R. and Friedrichs, K.O.,
Supersonic Flow and Shock Waves (Inter-
science Publishers, Inc., New York, 1948).
[3] Majda, A , , A qualitative model for dynamic combustion, SIN4 J. Appl. Math. 41, 1 (1981)70-93.
[h]
Volpert, A . I . ,
The space
BV
and quasilinear equations, Math. USSR Sb., 7
(19671 257-267. [5J
Dafermos, C.M.,
Characteristics in hyperbolic conservation laws, a study
of t h r structure and the asymptotic behavior of solutions, in Nonlinear Analysis and Mechanics, Vol. 1, Pitnian, London, 1977.
Lecture Notes in Num. Appl. Anal., 5 , 435-457 (1982) Nonlineur PDE in Applied Science. LI.S.-Jupun Seminar. Tokyo, 1982
Boundary Value Problems f o r Some Nonlinear Evolutional Systems of P a r t i a l D i f f e r e n t i a l Equations
Zhou Yu-lin
Department of M a t h e m a t i c s Peking U n i v e r s i t y Beijing CHTNA
I n t h e p a p e r , t h f boundary v a l u e problems f o r t h e n o n l i n e a r systems of t h e Schrodinger t y p e , t h e pseudo-parabolic t y p e and t h e p s e u d o - h y p e r b o l i c t y p e o f p a r t i a l d i f f e r e n t i a l equat i o n s a r e c o n s i d e r e d . The g e n e r a l i z e d g l o b a l s o l u t i o n s and t h e c l a s s i c a l g l o b a l s o l u t i o n s f o r t h e boundary v a l u e problems o f t h e s e n o n l i n e a r s y s t e m s a r e o b t a i n e d .
51.
Systems o f S c h r o d i n g c r Type. The n o n l i n e a r S c h r o d i n g e r e q u a t i o n s
- iu
u
t
xx
+ fi/uIpu =
o
(1.1)
and t h e n o n l i n e a r S c h r z d i n g e r s y s t e m s
o f complex v a l u e d f ~ l n c t i o n s [ l - ~ ’r,e g a r d e d a s t h e s y s t e m s o f r e a l v a l u e f u n c t i o n s ( o f r e a l p a r t s and i m a g i n a r y p a r t s ) a r e c o n t a i n e d i n t h e g e n e r a l s y s t e m
ut - A ( t ) u x x =
a s s i m p l e s p e c i a l c a s e s , where functions,
A(t)
ti
and
f(u)
(1.3)
f(ti)
are N-dimensional v e c t o r v a l u e d
i s a n o n s i n g u l a r and n o n n e g a t i v p l y d e f i n i t e m a t r i x .
problems o f t h e t h e o r e t i c a l p h y s i c s , c h e m i c a l r e a c t i o n s e t c . ,
435
In the
it i s v e r y o f t e n
ZHOUYu-Lin
436
For t h e systems of
t h a t t h e r e appear t h e e q u a t i o n s and systems o f such k i n d .
form (1.3) e f h i g h e r o r d e r , t h e p e r i o d i c boundary problems and t h e i n i t i a l v a l u e problems have been s t u d i e d i n [ 5 - 7 ] and t h e g e n e r a l i z e d g l o b a l s o l u t i o n s and t h e c l a s s i c a l global solutions a r e obtained. Now i n t h e p r e s e n t s e c t i o n , w e a r e going t o c o n s i d e r t h e f i r s t boundary
v a l u e problems
i n t h e r e c t a n g u l a r domain
Q
T
= {O 6 x 6
L, 0
t h e S c h r a d i n g e r t y p e o f second o r d e r , where
b
5)
u o ( x ) 6 WLl’(0,
a unique g l o b a l s o l u t i o n
i s bounded, t h e J a c o b i
t h e vector valued function
t h e r e e x i s t s a constant
E RN
A(t)
i s semibounded,
f(u)
s u c h t h a t f o r any N-dimensional v e c t o r s
IuI
0.
T a k i n g t h e s c a l a r p r o d u c t of t h e v e c t o r grating the resulting relation for
{uE(x, t ) }
x
uE
and t h e s y s t e m (1.5) a n d i n t e -
in the interval
[O, I!],
we g e t
By making u s e o f t h e boundary c o n d i t i o n (1.4),t h e s e c o n d find t h e t h i r d t e r m s of t h e l e f t hand s i d e o f t h e above e q u a l i t y t a k e t h e forms
Znou Yu-Lin
438
rcsyectively.
B;y v i r t u e o f t h e semi boimdcdness o f t h e J a c o b i d e r i v a t i v e m a t r i x
t h e l a s t t e r m o f t h e above e q u a l i t y c a n be w r i t t e n a s
Then t h e above, mentioned E q u a l i t y becomes
Ry means o f Gronwall't: lemma, the f o l l o w i n g lemma h o l d s .
Lemma I.2.
Under t h e c o n d i t,i o n s of Theorem 1.I, t h e a p p r o x i m a t e s o l u t i o n s
{uE(x, t)}
o f t h e problem (1.5), ( 1 . 1 4 ) have t h e e s t i m a t i o n
K2
wherc
f(0) = 0
is i n d e p e n d e n t o f
of
u
xx
>0
and d i r e c t l y d e p e n d e n t on
is a z e r o v e c t o r o r t h e s y s t e m ( 1 . 5 ) i s homogeneous,
elf(0)
K?
1 2.
When
i s a l s o indc-
L > 0.
p e n d e n t of Iri
E
order t o estimate t h e derivative
u
EX
(x, t ) , we make t h e s c a l a r product,
w i t h t h e s y s t p m (1.3) and i n t e g r a t e t h e r e s u l t i n g r e l a t i o n for
interval [0,
L]
by p a r t s .
2
qdt. u x (
where t h e s y s t e m
in
Then we h a v e
. y t ) 1 ' L 2 ( 0 , P . )+
2 2 4 "xx ( . *t)II L2( 0 , ).P
< Zbll ux( . , t
( 1 . 5 ) i s assumed t o be homogeneous, i . e . ,
by v i r L u e of t h e boundary c o n d i t i o n ( l . j l ) ,
t h e n we have
x
2
)I1L 2 ( " ,
f(0) = 0 .
k)
(1.9)
In fact,
Nonlinear Evolutional Systems
439
On the other hand,
Under the assumption
f(0) = 0, this becom?r;
From the inequality ( I . Y ) , we have the following lemma.
Lemma 1.3.
For the homogeneou, system (l.>), i.e.,
tions of Theorem 1.1,
t.!ip
approximate soluLionu
K3 is independent of
where
E
> 0
and
{uE(x, t )
[O,
a],
u
have t,he estimation
k > 0.
Differentiating the system (1.5) with respect to product of the resulting relation and
f(0) = 0, uricier the assump-
xxx'
x, making the scalar
then integrating for
x
in interval
we have
x = 0, L
On the lateral boundaries
u
(0,
xx
of the rectangular domain
Q,,
the relations
t) = uxx(9". t,) = 0
(1.12)
follow immediately from the system (1.5). In fact, on account of the nonsingularity of the matrix = A(t) + EE
expressed as
A(t),
is bounded for
the invcrse matrix E > 0
and
1 A- (t,) of the matrix
AE(t)
0 6 t 6 T, then the system (1.5) can be
ZHOUYu-Lin
440
Thus t h e c o n d i t i o n s ( 1 . 1 2 ) are o b v i o u s l y a v a i l a b l e .
C1
where E
> 0
C2
and
K1, K2
a r e c o n s t a n t s dependent on
and a r e i n d e p e n d e n t o f
P. > 0.
and
Lemma 1 . 4 . -
B e s i d e s t,he c o n d i t i o n s o f Lemma 1 . 3 , assume t h a t
t i n u o u s l y d i f f e r e n t i a b l e and { u E ( x , t)}
uo(x) E. WL2)(0,
e).
f(u)
i s t w i c e con-
The a p p r o x i m a t e s o l u t i o n s
s a t i s f y the inequality
K4
where
Also
is i n d e p p n d e n t of
E
> 0
and
(1
> 0.
By means o f t h e above e s t i m a t i o n s we can c o n s t r u c t t h e g l o b a l s o l u t i o n o f problem (1.31, ( 1 . 4 ) from t h c s e t of a p p r o x i m a t e s o l u t i o n s t h e a s s u m p t i o n s o f Lemma
1.4
{ u E ( x , t ) ) and
T); L2(0,
a))
for
E
> C
I t c a n b e s e l e c t e d from
{u,(x,
{uE,(x,t ) ) , t h a t t h e r e e x i s t s a v e c t o r v a l u e d f u n c t i o n when
i
+
-
,
E.
that, and
-f
0,
t h e sequences
{uE,(x, t ) }
and
> 0.
Then
u(x, t )
and
ux(x, t )
t)},
a sequence
u(x, t ) , s u c h t h a t
{ U ~ . ~ ( t)} X , a r e uniform-
1
ly c o n v e r g e n t t o
E
{ u E x ( x , t ) ) a r e u n i f o r m l y bounded i n t h e s p a c e o f H 6 l d e r con-
tinuous f u n c t i o n s f o r
1
Under
i s u n i f o r m l y bounded i n t h e f u n c t i o n a l
{uE(x, t ) }
T); W2(2)(0, 1 ) r\ W h ” ( ( 0 ,
L,((O,
space
{uE(x, t ) } .
1
respectively i n
QT.
Hence i t i s c l e a r
{ f ( u E (x, t ) ) } u n i f o r m l y c o n v e r g e s t o f ( u ( x , t)) a n d a l s o c u E , x x ( x ’ t ) } i 1 { u E i t ( x , t)} c o n v e r g e weakly t o u x x ( x , t ) a n d u t ( x , t ) r e s p e c t i v e l y .
For any t e s t f u n c t i o n
$(x, t ) , t h e r e i s t h e i n t e g r a l r e l a t i o n
I! QT$[uEt
-
A(t)uEXX -
E UEXX
-
f ( uE ) ] d x d t
From t h e e s t i m a t i o n formular (l-lO), we know t h a t
0.
(1.14)
Nonlinear Evolutional Systems t e n d s t o z e r o as
E.
+
0.
44 1
Therefore passing t o t h e l i m i t f o r t h e ( i . h ) , w e get
u(x, t ) s a t i s f i e s (1.3) a l m o s t e v e r y w h e r e , i . e . ,
T h i s means t h a t
g e n e r a l i z e d g l o b a l s o l u t i o n o f t h e boundary v a l u e p r o b l e m
u(x, t )
is a
( 1 . 4 ) f o r t h e degener-
a t e system (1.3) of t h e Schrodinger t y p e .
Theorem 1 . 2 .
Under t h e c o n d i t i o n s o f Lemma
1 . 4 , t h e boundary v a l u e problem ( 1 . 4 )
f o r t h e s y s t e m (1.3)o f S c h r a d i n g e r t y p e h a s a u n i q u e g l o b a l s o l u t i o n
T); WL2)(0, a ) )
u(x, t ) E L,((O,
nWp)((O.T); Lp(O, a ) ) .
S i n c e t h e e s t i m a t i o n s g i v e n i n t h e l a s t t h r e e lemmas a r e a l l i n d e p e n d e n t o f t h e width
for
L
L > 0
+ m,
Q,,
o f t h e r e c t a n g u l a r domain
by t a k i n g t h e l i m i t i n g p r o c e s s
we can o b t a i n the s o l u t i o n o f t h e boundary v a l u e p r o b l e m
u ( 0 , t) = 0 ,
i n t h e i n f i n i t e domain
Q; = {O \< x < -,
O < t , < T ;